A smart composite based on carbon fiber and epoxy matrix for new offshore wind-turbines. Multi-scale numerical and analytical modelings

Smart structures have been developed as to monitor structures that have to operate in demanding industrial applications with includes harsh environments (Aeronautics and aerospace, Civil engineering, nuclear and chemical power plants…), too. Current study is focused on the suggestion of new smart composite materials that can be successfully used for wind blade structures in offshore energy generation farms. Indeed, to bring expectable energy-generation performances, new generation wind blades have to exceed 100m length, which is a hardly achievable target given that actual constitutive composite materials are based on glass-fibers, that are notably known to be very heavy and lacking stiffness. Therefore, the switch to carbon fibers (lighter and stiffer) becomes mandatory. In this thesis, we propose the implementation of a smart composite material that is based on carbon fibers and epoxy matrix (here called parent material). Fiber Optic Sensors (FOS) and Quantum-Resistive Sensors (QRS) will be used for detection of over-strained areas all over the structure. This choice is expected to enable for accurate documentation and instant sending of critical information to engineers. To achieve this goal of development of a new smart material for a critical application in offshore wind generation, we have chosen to illustrate it in a research document that is grouping several aspects, summarized in 5 chapters. The thesis is conducted using numerical and analytical modelings. The document is not having the ambition to be exhaustive. It is intended to present a pragmatic research that emphasize how areas of mechanical weakness can be diagnosed, what are the solutions that can be suggested and how we can support them, what are the issues pertaining to the use of embedded sensors and some experimental results that give appraisal of current performance status and what could be future trends.