Simulation of multi-frequency-induction-hardening including phase transitions and mechanical effects

Induction hardening is a well known method for the heat treatment of steel components. With the concept of multi-frequency hardening, where currents with two different frequency components are provided on a single inductor coil, it is possible to optimize the hardening zone to follow a given contour even in the case of complicated 3D geometries like gears.In this paper, we consider the simulation of multi-frequency induction hardening in 3D. The equations to solve are the magneto-quasistatic approximation of Maxwell's equations describing the electromagnetic fields, the balance of momentum to determine internal stresses and deformations arising from thermoelasticity and transformation induced plasticity (TRIP), a rate law to determine the distribution of different phases and the heat equation to determine the temperature distribution in the workpiece.The equations are solved using adaptive finite element methods. The simulation results are compared to experiments for discs and for gears. A very good agreement for the hardening profile and the temperature is observed. It is also possible to predict the distribution of residual stresses after the heat treatment. HighlightsIntroduction of a multi-physics model for multifrequency induction hardening in 3D.An efficient FEM simulation using edge elements and adaptivity is presented.Simulation results show a very good correspondence between experiment and simulation.Prediction of hardening profile and stress distribution after heat treatment.

[1]  R. Hoppe,et al.  Residual based a posteriori error estimators for eddy current computation , 2000 .

[2]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[3]  Joachim Schöberl,et al.  Numerical analysis of nonlinear multiharmonic eddy current problems , 2005, Numerische Mathematik.

[4]  Rüdiger Verfürth,et al.  A Posteriori Error Estimation Techniques for Finite Element Methods , 2013 .

[5]  Jörg Ostrowski,et al.  Boundary Element Methods for Inductive Hardening , 2003 .

[6]  J. Rappaz,et al.  Numerical Modelling of Induction Heating for Two Dimensional Geometries , 2001 .

[7]  E. Werner,et al.  A new view on transformation induced plasticity (TRIP) , 2000 .

[8]  J. Leblond Mathematical modelling of transformation plasticity in steels II: Coupling with strain hardening phenomena , 1989 .

[9]  R. Honeycombe Steels, Microstructure and Properties , 1982 .

[10]  Olaf Schenk,et al.  Fast Methods for Computing Selected Elements of the Green's Function in Massively Parallel Nanoelectronic Device Simulations , 2013, Euro-Par.

[11]  Lakhdar Taleb,et al.  A micromechanical modeling of the Greenwood–Johnson mechanism in transformation induced plasticity , 2003 .

[12]  M. Schwenk Entwicklung und Validierung eines numerischen Simulationsmodells zur Beschreibung der induktiven Ein- und Zweifrequenzrandschichthärtung am Beispiel von vergütetem 42CrMo4 , 2012 .

[13]  Qingzhe Liu,et al.  Simulation of quenching involved in induction hardening including mechanical effects , 2013 .

[14]  B. O,et al.  Optimal Control of Inductive Heating of Ferromagnetic Materials , 2013 .

[15]  D. Ivanov,et al.  Simulation of Stress and Strain for Induction-Hardening Applications , 2013, Journal of Materials Engineering and Performance.

[16]  A Candeo,et al.  Multiphysics Modeling of Induction Hardening of Ring Gears for the Aerospace Industry , 2011, IEEE Transactions on Magnetics.

[17]  B. Nacke,et al.  3 D-Modelling of the Transient Heating Process for Induction Surface Hardening , 2003 .

[18]  J. Devaux,et al.  Mathematical modelling of transformation plasticity in steels I: Case of ideal-plastic phases , 1989 .

[19]  Rémy Glardon,et al.  Numerical modeling in induction heating for axisymmetric geometries , 1997 .

[20]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[21]  Raducanu Razvan,et al.  MATHEMATICAL MODELS and METHODS in APPLIED SCIENCES , 2012 .

[22]  Franco Bonollo,et al.  Induction heat treatment of a ISO C45 steel bar: Experimental and numerical analysis , 2006 .

[23]  M. Hahn,et al.  Experimentelle und numerische Untersuchung zum induktiven Vorschubhärten von Profil führungsschienen , 2012 .

[24]  Dimitris P. Labridis,et al.  Calculation of eddy current losses in nonlinear ferromagnetic materials , 1989 .

[25]  M. Fisk,et al.  Simulations and measurements of combined induction heating and extrusion processes , 2010 .

[26]  K. Easterling,et al.  Phase Transformations in Metals and Alloys , 2021 .

[27]  Verein Deutscher Eisenhüttenleute,et al.  Atlas zur Wärmebehandlung der Stähle , 1954 .

[28]  Thomas Petzold,et al.  Modelling, Analysis and Simulation of Multifrequency Induction Hardening , 2014 .

[29]  D. P. Koistinen,et al.  A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels , 1959 .

[30]  Jean-Loup Chenot,et al.  A numerical model for induction heating processes coupling electromagnetism and thermomechanics , 2003 .

[31]  Franz Dieter Fischer,et al.  Transformation-Induced Plasticity (TRIP) , 1996 .

[32]  Dietmar Hömberg,et al.  A mathematical model for induction hardening including mechanical effects , 2004 .

[33]  E. Rocca,et al.  Analysis and simulations of multifrequency induction hardening , 2014, 1401.2013.