Myths and truths about optical phase change materials: A perspective

Uniquely furnishing giant and nonvolatile modulation of optical properties and chalcogenide phase change materials (PCMs) have emerged as a promising material to transform integrated photonics and free-space optics alike. The surge of interest in these materials warrants a thorough understanding of their characteristics specifically in the context of photonic applications. This article seeks to clarify some commonly held misconceptions about PCMs and offer a perspective on new research frontiers in the field.

[1]  R. Soref,et al.  Broadband nonvolatile photonic switching based on optical phase change materials: beyond the classical figure-of-merit. , 2018, Optics letters.

[2]  I. Takeuchi,et al.  Low-Loss Integrated Photonic Switch Using Subwavelength Patterned Phase Change Material , 2019, ACS Photonics.

[3]  D. Werner,et al.  Design for quality: reconfigurable flat optics based on active metasurfaces , 2020, Nanophotonics.

[4]  U. Celano,et al.  Electrical tuning of phase-change antennas and metasurfaces , 2020, Nature Nanotechnology.

[5]  A. Majumdar,et al.  Modeling Electrical Switching of Nonvolatile Phase-Change Integrated Nanophotonic Structures with Graphene Heaters. , 2020, ACS applied materials & interfaces.

[6]  Kang L. Wang,et al.  Resistive switching materials for information processing , 2020, Nature Reviews Materials.

[7]  C. David Wright,et al.  An optoelectronic framework enabled by low-dimensional phase-change films , 2014, Nature.

[8]  J. Teng,et al.  Optically reconfigurable metasurfaces and photonic devices based on phase change materials , 2015, Nature Photonics.

[9]  Xuan Li,et al.  Parallel convolutional processing using an integrated photonic tensor core , 2021, Nature.

[10]  M. Qiu,et al.  Polarization switching of thermal emissions based on plasmonic structures incorporating phase-changing material Ge2Sb2Te5 , 2018, Optical Materials Express.

[11]  Nafisa Noor,et al.  Phase Change Memory for Physical Unclonable Functions , 2020 .

[12]  Eric Pop,et al.  Nonvolatile Electrically Reconfigurable Integrated Photonic Switch Enabled by a Silicon PIN Diode Heater. , 2020, Advanced materials.

[13]  J. Kong,et al.  Multi‐Level Electro‐Thermal Switching of Optical Phase‐Change Materials Using Graphene , 2020, 2007.07944.

[14]  Li Lu,et al.  Tuneable Thermal Emission Using Chalcogenide Metasurface , 2018, Advanced Optical Materials.

[15]  Wei Zhang,et al.  Role of vacancies in metal-insulator transitions of crystalline phase-change materials. , 2012, Nature materials.

[16]  A. Sarangan,et al.  Broadband Reflective Optical Limiter Using GST Phase Change Material , 2018, IEEE Photonics Journal.

[17]  K. V. Sreekanth,et al.  Wide Bandgap Phase Change Material Tuned Visible Photonics , 2018, Advanced Functional Materials.

[18]  Changming Wu,et al.  Programmable phase-change metasurfaces on waveguides for multimode photonic convolutional neural network , 2020, Nature Communications.

[19]  Harish Bhaskaran,et al.  Integrated all-photonic non-volatile multi-level memory , 2015, Nature Photonics.

[20]  M. Wuttig,et al.  Design Parameters for Phase‐Change Materials for Nanostructure Resonance Tuning , 2017 .

[21]  Richard Soref,et al.  Broadband Electro-Optical Crossbar Switches Using Low-Loss Ge2Sb2Se4Te1 Phase Change Material , 2019, Journal of Lightwave Technology.

[22]  Matthias Wuttig,et al.  Measurement of crystal growth velocity in a melt-quenched phase-change material , 2013, Nature Communications.

[23]  Theresa S. Mayer,et al.  Reconfigurable near-IR metasurface based on Ge2Sb2Te5 phase-change material , 2018, Optical Materials Express.

[24]  Eric S. Harper,et al.  Artificial neural network discovery of a switchable metasurface reflector. , 2020, Optics express.

[25]  F. Rao,et al.  Recipe for ultrafast and persistent phase-change memory materials , 2020, NPG Asia Materials.

[26]  T. Zentgraf,et al.  Beam switching and bifocal zoom lensing using active plasmonic metasurfaces , 2017, Light: Science & Applications.

[27]  Eric Pop,et al.  Reconfigurable infrared spectral imaging with phase change materials , 2019, Defense + Commercial Sensing.

[28]  Juejun Hu,et al.  Springer Handbook of Glass , 2019, Springer Handbooks.

[29]  Dae-Hwan Kang,et al.  Investigation of the optical and electronic properties of Ge2Sb2Te5 phase change material in its amorphous, cubic, and hexagonal phases , 2005 .

[30]  Xuan Li,et al.  Plasmonic nanogap enhanced phase-change devices with dual electrical-optical functionality , 2018, Science Advances.

[31]  Tian Gu,et al.  High-performance and scalable on-chip digital Fourier transform spectroscopy , 2018, Nature Communications.

[32]  Arturo Mendoza-Galván,et al.  Drude-like behavior of Ge:Sb:Te alloys in the infrared , 2000 .

[33]  Stephen E. Borg,et al.  Reversible optical tuning of GeSbTe phase-change metasurface spectral filters for mid-wave infrared imaging , 2020, Optica.

[34]  A. Adibi,et al.  Tunable nanophotonics enabled by chalcogenide phase-change materials , 2020, 2001.06335.

[36]  Hitoshi Kawashima,et al.  Current-driven phase-change optical gate switch using indium–tin-oxide heater , 2017 .

[37]  C. Wright,et al.  Nonvolatile All‐Optical 1 × 2 Switch for Chipscale Photonic Networks , 2017 .

[38]  Arka Majumdar,et al.  Low-Loss and Broadband Nonvolatile Phase-Change Directional Coupler Switches , 2018, ACS Photonics.

[39]  Masud Mansuripur,et al.  Crystallization behavior of as-deposited, melt quenched, and primed amorphous states of Ge2Sb2.3Te5 films , 2000 .

[40]  V. Pruneri,et al.  Optical switching at 1.55 μm in silicon racetrack resonators using phase change materials , 2013 .

[41]  Linjie Zhou,et al.  Nonvolatile waveguide transmission tuning with electrically-driven ultra-small GST phase-change material. , 2019, Science bulletin.

[42]  Thomas Taubner,et al.  Phase-change materials for non-volatile photonic applications , 2017, Nature Photonics.

[43]  C. David Wright,et al.  Controlled switching of phase-change materials by evanescent-field coupling in integrated photonics [Invited] , 2018, Optical Materials Express.

[44]  Martin Ehrhardt,et al.  Real-space imaging of atomic arrangement and vacancy layers ordering in laser crystallised Ge2Sb2Te5 phase change thin films , 2016 .

[45]  Zhiyuan Cheng,et al.  Broader color gamut of color-modulating optical coating display based on indium tin oxide and phase change materials. , 2018, Applied optics.

[46]  M. Wuttig,et al.  A Switchable Mid‐Infrared Plasmonic Perfect Absorber with Multispectral Thermal Imaging Capability , 2015, Advanced materials.

[47]  Linjie Zhou,et al.  Miniature Multilevel Optical Memristive Switch Using Phase Change Material , 2019, ACS Photonics.

[48]  Simone Raoux,et al.  Nanoscale nuclei in phase change materials: Origin of different crystallization mechanisms of Ge2Sb2Te5 and AgInSbTe , 2014 .

[49]  Behrad Gholipour,et al.  An All‐Optical, Non‐volatile, Bidirectional, Phase‐Change Meta‐Switch , 2013, Advanced materials.

[50]  Vladimir Liberman,et al.  Broadband transparent optical phase change materials for high-performance nonvolatile photonics , 2018, Nature Communications.

[51]  J. Feldmann,et al.  All-optical spiking neurosynaptic networks with self-learning capabilities , 2019, Nature.

[52]  Dirk Englund,et al.  Deep learning with coherent nanophotonic circuits , 2017, 2017 Fifth Berkeley Symposium on Energy Efficient Electronic Systems & Steep Transistors Workshop (E3S).

[53]  J Feldmann,et al.  Calculating with light using a chip-scale all-optical abacus , 2017, Nature Communications.

[54]  Hualiang Zhang,et al.  Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material , 2020, Nature Nanotechnology.

[55]  O. Muskens,et al.  A New Family of Ultralow Loss Reversible Phase‐Change Materials for Photonic Integrated Circuits: Sb2S3 and Sb2Se3 , 2020, Advanced Functional Materials.

[56]  Stephen E. Borg,et al.  All-optical continuous tuning of phase-change plasmonic metasurfaces for multispectral thermal imaging , 2019, 1912.08086.

[57]  Anna Baldycheva,et al.  Reconfigurable multilevel control of hybrid all-dielectric phase-change metasurfaces , 2020, Optica.