The Color Monogenic Signal: Application to Color Edge Detection and Color Optical Flow

The aim of this paper is to define an extension of the analytic signal for a color image. We generalize the construction of the so-called monogenic signal to mappings with values in the vectorial part of the Clifford algebra ℝ5,0. Solving a Dirac equation in this context leads to a multiscale signal (relatively to the Poisson scale-space) which contains both structure and color information. The color monogenic signal can be used in a wide range of applications. Two examples are detailed: the first one concerns a multiscale geometric segmentation with respect to a given color; the second one is devoted to the extraction of the optical flow from moving objects of a given color.

[1]  Aldo Cumani,et al.  Edge detection in multispectral images , 1991, CVGIP Graph. Model. Image Process..

[2]  R. Bracewell Two-dimensional imaging , 1994 .

[3]  David Tschumperlé,et al.  Fast Anisotropic Smoothing of Multi-Valued Images using Curvature-Preserving PDE's , 2006, International Journal of Computer Vision.

[4]  Gerald Sommer,et al.  Geometric Computing with Clifford Algebras , 2001, Springer Berlin Heidelberg.

[5]  Pierre Courtellemont,et al.  The Color Monogenic Signal: A new framework for color image processing. application to color optical flow , 2009, 2009 16th IEEE International Conference on Image Processing (ICIP).

[6]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  J. Gilbert,et al.  Clifford Algebras and Dirac Operators in Harmonic Analysis , 1991 .

[8]  Pierre Courtellemont,et al.  A Metric and Multiscale Color Segmentation Using the Color Monogenic Signal , 2009, CAIP.

[9]  Rachid Deriche,et al.  Recursive Filtering and Edge Closing: two primary tools for 3-D edge detection , 1990, ECCV.

[10]  D. Hestenes,et al.  Clifford Algebra to Geometric Calculus , 1984 .

[11]  Gerik Scheuermann,et al.  Clifford Fourier transform on vector fields , 2005, IEEE Transactions on Visualization and Computer Graphics.

[12]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[13]  G. Sommer,et al.  The geometry of 2D image signals , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[14]  B. S. Manjunath,et al.  Multi-scale edge detection and image segmentation , 2005, 2005 13th European Signal Processing Conference.

[15]  J. Weickert,et al.  Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods , 2005 .

[16]  Michael Felsberg,et al.  The monogenic signal , 2001, IEEE Trans. Signal Process..

[17]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[18]  Silvano Di Zenzo,et al.  A note on the gradient of a multi-image , 1986, Comput. Vis. Graph. Image Process..

[19]  Michael Felsberg,et al.  Low-level image processing with the structure multivector , 2002 .

[20]  Guillermo Sapiro,et al.  Color Snakes , 1997, Comput. Vis. Image Underst..

[21]  Joost van de Weijer,et al.  Color Feature Detection: An Overview , 2006 .

[22]  Gerald Sommer,et al.  Dense Optical Flow Estimation from the Monogenic Curvature Tensor , 2007, SSVM.

[23]  Jitendra Malik,et al.  A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[24]  Michael Felsberg,et al.  The Monogenic Scale-Space: A Unifying Approach to Phase-Based Image Processing in Scale-Space , 2004, Journal of Mathematical Imaging and Vision.