Electrolocation and electrocommunication in pulse gymnotids: signal carriers, pre-receptor mechanisms and the electrosensory mosaic

Constraints introduced by signal carriers, pre-receptor mechanisms and receptor transduction are fundamental for shaping the signals used by the brain to build up perceptual images. This review analyses some of these constraints in the electrosensory system of pulse Gymnotids. First, it describes the characteristics and differences of electrolocation and electrocommunication carriers. Second, it analyses the role of electrogenic and non-electrogenic tissues of the fish body in the generation and conditioning of these carriers. Two pre-receptor mechanisms are discussed: (a) the funneling of currents to the perioral region and (b) a Mexican-hat profile involved in edge detection. Finally, some characteristics of the electroreceptor structure and the sensory mosaic are examined. We conclude that there is an electrosensory fovea at the perioral region where a large density and variety of receptors is stimulated by self- and conspecific-generated currents funneled there by non electrogenic tissues. Differences in carrier waveform may be used to distinguish between reafferent and communication signals.

[1]  Angel A. Caputi,et al.  Physical basis of distance discrimination in weakly electric fish , 2000 .

[2]  K. Grant,et al.  Physiology and Plasticity of Morphologically Identified Cells in the Mormyrid Electrosensory Lobe , 1997, The Journal of Neuroscience.

[3]  B. Rasnow,et al.  Electric organ discharges of the gymnotiform fishes: III. Brachyhypopomus , 1999, Journal of Comparative Physiology A.

[4]  A. Caputi,et al.  Electric organ activation in Gymnotus carapo: Spinal origin and peripheral mechanisms , 1993, Journal of Comparative Physiology A.

[5]  R. H. Hamstra,et al.  Coding properties of two classes of afferent nerve fibers: high-frequency electroreceptors in the electric fish, Eigenmannia. , 1973, Journal of neurophysiology.

[6]  Theodore H. Bullock,et al.  Significance of Findings on Electroreception for General Neurobiology , 1993 .

[7]  K. Negishi,et al.  Physiological properties of electroreceptors of some gymnotids. , 1962, Journal of neurophysiology.

[8]  B Rasnow,et al.  Electric organ discharges and electric images during electrolocation. , 1999, The Journal of experimental biology.

[9]  A. Caputi,et al.  Electroreception in Gymnotus carapo: pre-receptor processing and the distribution of electroreceptor types. , 2000, The Journal of experimental biology.

[10]  B. Rasnow,et al.  The effects of simple objects on the electric field of Apteronotus , 1996, Journal of Comparative Physiology A.

[11]  Joseph Bastian,et al.  Frequency response characteristics of electroreceptors in weakly electric fish (Gymnotoidei) with a pulse discharge , 1976, Journal of comparative physiology.

[12]  S. Hagiwara,et al.  Coding mechanisms of electro-receptor fibers in some electric fish. , 1963, Journal of neurophysiology.

[13]  C. Bell,et al.  The electric image in weakly electric fish: physical images of resistive objects in Gnathonemus petersii. , 1998, The Journal of experimental biology.

[14]  Peter Eden Kirwan Donaldson,et al.  Electronic apparatus for biological research , 1958 .

[15]  Susumu Hagiwara,et al.  A latency-change mechanism involved in sensory coding of electric fish (mormyrids) , 1967 .

[16]  Leonard Maler,et al.  GABAergic inhibition shapes temporal and spatial response properties of pyramidal cells in the electrosensory lateral line lobe of gymnotiform fish , 2004, Journal of Comparative Physiology A.

[17]  Walter Heiligenberg,et al.  Theoretical and experimental approaches to spatial aspects of electrolocation , 2004, Journal of comparative physiology.

[18]  W. Heiligenberg,et al.  Phase sensitivity in electroreception. , 1978, Science.

[19]  M. A. MacIver,et al.  Prey capture in the weakly electric fish Apteronotus albifrons: sensory acquisition strategies and electrosensory consequences. , 1999, The Journal of experimental biology.

[20]  A. Caputi,et al.  Waveform generation in Rhamphichthys rostratus (L.) (Teleostei, Gymnotiformes) , 1994, Journal of Comparative Physiology A.

[21]  T. Szabo Anatomy of the Specialized Lateral Line Organs of Electroreception , 1974 .

[22]  K. E. Machin,et al.  The Mechanism of Object Location in Gymnarchus Niloticus and Similar Fish , 1958 .

[23]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[24]  O. Trujillo-Cenóz,et al.  Waveform generation of the electric organ discharge inGymnotus carapo , 1989, Journal of Comparative Physiology A.

[25]  O. Macadar,et al.  Waveform generation of the electric organ discharge inGymnotus carapo , 2004, Journal of Comparative Physiology A.

[26]  T Szabo,et al.  Sense organs of the lateral line system in some electric fish of the Gymnotidae, Mormyridae and Gymnarchidae , 1965, Journal of morphology.

[27]  O. Trujillo-Cenóz,et al.  INNERVATION PATTERNS IN THE TUBEROUS ORGANS OF GYMNOTUS CARAPO , 1981 .

[28]  S. W. Kuffler Discharge patterns and functional organization of mammalian retina. , 1953, Journal of neurophysiology.

[29]  A. Caputi,et al.  The electric image in weakly electric fish: perception of objects of complex impedance. , 2000, The Journal of experimental biology.

[30]  M. Sanders Handbook of Sensory Physiology , 1975 .

[31]  B. Rasnow,et al.  The electric organ discharges of the gymnotiform fishes: I. Apteronotus leptorhynchus , 1996, Journal of Comparative Physiology A.

[32]  Bernd Fritzsch,et al.  Time course of structural changes in regenerating electroreceptors of a weakly electric fish , 1990, The Journal of comparative neurology.

[33]  H. W. Lissmann,et al.  Continuous Electrical Signals from the Tail of a Fish, Gymnarchus niloticus Cuv. , 1951, Nature.

[34]  A. Caputi,et al.  Waveform generation of the electric organ discharge inGymnotus carapo , 2004, Journal of Comparative Physiology A.

[35]  V. Han,et al.  Myelinated dendrites in the mormyrid electrosensory lobe , 2001, The Journal of comparative neurology.

[36]  J. Bastian Variations in the frequency response of electroreceptors dependent on receptor location in weakly electric fish (Gymnotoidei) with a pulse discharge , 2004, Journal of comparative physiology.

[37]  Angel A. Caputi,et al.  The electric image in weakly electric fish: I. A data-based model of waveform generation inGymnotus carapo , 1995, Journal of Computational Neuroscience.

[38]  G. Czéh,et al.  Sensory physiology of aquatic lower vertebrates , 1981 .

[39]  Sheryl Coombs,et al.  Information-processing demands in electrosensory and mechanosensory lateral line systems , 2002, Journal of Physiology-Paris.

[40]  A. Caputi,et al.  Electroreception in Gymnotus carapo: differences between self-generated and conspecific-generated signal carriers. , 2001, The Journal of experimental biology.

[41]  Eric I. Knudsen,et al.  Spatial aspects of the electric fields generated by weakly electric fish , 1975, Journal of comparative physiology.

[42]  N. Hoshimiya,et al.  TheApteronotus EOD field: Waveform and EOD field simulation , 1980, Journal of comparative physiology.

[43]  Henning Scheich,et al.  The Detection of Electric Fields from Electric Organs , 1974 .

[44]  H. K. Hartline,et al.  Inhibitory Interaction in the Retina of Limulus , 1972 .

[45]  A. Caputi,et al.  Structural and functional aspects of the fast electrosensory pathway in the electrosensory lateral line lobe of the pulse fish Gymnotus carapo , 1998, The Journal of comparative neurology.

[46]  Caputi The electric organ discharge of pulse gymnotiforms: the transformation of a simple impulse into a complex spatio-temporal electromotor pattern , 1999, The Journal of experimental biology.

[47]  A. Caputi,et al.  The Electric Organ Discharge of Brachyhypopomus pinnicaudatus , 1998, Brain, Behavior and Evolution.

[48]  Carl D. Hopkins,et al.  Stimulus filtering and electroreception: Tuberous electroreceptors in three species of Gymnotoid fish , 2004, Journal of comparative physiology.

[49]  J. Bastian Electrolocation: II. The effects of moving objects and other electrical stimuli on the activities of two categories of posterior lateral line lobe cells inApteronotus albifrons , 1981 .

[50]  O. Macadar,et al.  Innervation pattern and electric organ discharge waveform in Gymnotus carapo (Teleostei; Gymnotiformes). , 1984, Journal of neurobiology.