A simple structural feature is a major determinant of the identity of a transfer RNA

Analysis of a series of mutants of an Escherichia coli alanine transfer RNA shows that substitution of a single G-U base pair in the acceptor helix eliminates aminoacylation with alanine in vivo and in vitro. Introduction of that base pair into the analogous position of a cysteine and a phenylalanine transfer RNA confers upon each the ability to be aminoacylated with alanine. Thus, as little as a single base pair can direct an amino acid to a specific transfer RNA.

[1]  Francis Crick,et al.  Codon--anticodon pairing: the wobble hypothesis. , 1966, Journal of Molecular Biology.

[2]  M. Hooper,et al.  Mischarging in mutant tyrosine transfer RNAs , 1972, FEBS letters.

[3]  H. Ozeki,et al.  Mutant tyrosine tRNA of altered amino acid specificity , 1972, FEBS letters.

[4]  C. Yanofsky,et al.  1 Tryptophan Synthetase , 1972 .

[5]  P. Schimmel,et al.  Transfer ribonucleic acid synthetase catalyzed deacylation of aminoacyl transfer ribonucleic acid in the absence of adenosine monophosphate and pyrophosphate. , 1972, Biochemistry.

[6]  D. Crothers,et al.  Is there a discriminator site in transfer RNA? , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[7]  J. Celis,et al.  Amino acid acceptor stem of E. coli suppressor tRNA tyr is a site of synthetase recognition. , 1973, Nature: New biology.

[8]  A. Ghysen,et al.  Mischarging single and double mutants of Escherichia coli sup3 tyrosine transfer RNA. , 1974, Journal of molecular biology.

[9]  N. Seeman,et al.  Three-Dimensional Tertiary Structure of Yeast Phenylalanine Transfer RNA , 1974, Science.

[10]  M. Yaniv,et al.  A single mutational modification of a tryptophan-specific transfer RNA permits aminoacylation by glutamine and translation of the codon UAG. , 1974, Journal of molecular biology.

[11]  R. Williams,et al.  Primary structure of E. coli alanine transfer RNA: relation to the yeast phenylalanyl tRNA synthetase recognition site. , 1974, Biochemical and biophysical research communications.

[12]  H. Inokuchi,et al.  Letter: Mutant tyrosine transfer ribonucleic acids of Escherichia coli: construction by recombination of a double mutant A1G82 chargeable with glutamine. , 1974, Journal of molecular biology.

[13]  B. Clark,et al.  Structure of yeast phenylalanine tRNA at 3 Å resolution , 1974, Nature.

[14]  A Klug,et al.  Structure of yeast phenylalanine transfer RNA at 2.5 A resolution. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[15]  D. Baccanari,et al.  Purification and properties of Escherichia coli dihydrofolate reductase. , 1975, Biochemistry.

[16]  A. Rich,et al.  Structural domains of transfer RNA molecules. , 1976, Science.

[17]  J. Ebel,et al.  Interpretation of tRNA-mischarging kinetics. , 1976, European journal of biochemistry.

[18]  A. Rich,et al.  Structural organization of complexes of transfer RNAs with aminoacyl transfer RNA synthetases. , 1977, Nucleic acids research.

[19]  E. Lund,et al.  Spacer transfer RNAs in ribosomal RNA transcripts of E. coli: Processing of 30S ribosomal RNA in vitro , 1977, Cell.

[20]  R. Mosteller,et al.  Interactions of tryptophan synthetase subunits in Escherichia coli containing mutationally altered beta2 subunits. , 1977, The Journal of biological chemistry.

[21]  F. Sanger,et al.  DNA sequencing with chain-terminating inhibitors. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[22]  A. C. Chang,et al.  Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid , 1978, Journal of bacteriology.

[23]  M. Inouye,et al.  DNA sequence of the gene for the outer membrane lipoprotein of E. coli: an extremely AT-rich promoter , 1979, Cell.

[24]  R. Young,et al.  Sequence of the 16 S-23 s spacer region in two ribosomal RNA operons of Escherichia coli. , 1979, The Journal of biological chemistry.

[25]  D. Söll,et al.  Aminoacyl-tRNA synthetases: general features and recognition of transfer RNAs. , 1979, Annual review of biochemistry.

[26]  M. Yarus,et al.  Dual specificity of su+ 7 tRNA. Evidence for translational discrimination. , 1980, Journal of molecular biology.

[27]  R. Cortese,et al.  pEMBL: a new family of single stranded plasmids. , 1983, Nucleic acids research.

[28]  L. H. Schulman,et al.  Anticodon loop size and sequence requirements for recognition of formylmethionine tRNA by methionyl-tRNA synthetase. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[29]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[30]  L. Regan,et al.  Modular arrangement of functional domains along the sequence of an aminoacyl tRNA synthetase , 1983, Nature.

[31]  E. J. Murgola,et al.  Nucleotide substitution in the amino acid acceptor stem of lysine transfer RNA causes missense suppression. , 1984, Journal of molecular biology.

[32]  L. Regan,et al.  Dispensable pieces of an aminoacyl tRNA synthetase which activate the catalytic site , 1984, Cell.

[33]  E. J. Murgola,et al.  Isolation and nucleotide sequence analysis of tRNAAlaGGC from Escherichia coli K-12 , 1985, Journal of bacteriology.

[34]  L. H. Schulman,et al.  In vitro conversion of a methionine to a glutamine-acceptor tRNA. , 1985, Biochemistry.

[35]  E. J. Murgola tRNA, suppression, and the code. , 1985, Annual review of genetics.

[36]  L. Kisselev The role of the anticodon in recognition of tRNA by aminoacyl-tRNA synthetases. , 1985, Progress in nucleic acid research and molecular biology.

[37]  L. Regan,et al.  Two mutations in the dispensable part of alanine tRNA synthetase which affect the catalytic activity. , 1985, The Journal of biological chemistry.

[38]  J. Miller,et al.  Expression of synthetic suppressor tRNA genes under the control of a synthetic promoter. , 1986, Gene.

[39]  J M Masson,et al.  Construction of two Escherichia coli amber suppressor genes: tRNAPheCUA and tRNACysCUA. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[40]  R. Ogden,et al.  Changing the identity of a transfer RNA , 1986, Nature.

[41]  H B Nicholas,et al.  Differences between transfer RNA molecules. , 1987, Journal of molecular biology.

[42]  P. Schimmel,et al.  Aminoacyl tRNA synthetases: general scheme of structure-function relationships in the polypeptides and recognition of transfer RNAs. , 1987, Annual review of biochemistry.

[43]  M. Yarus,et al.  Systematic alterations in the anticodon arm make tRNA(Glu)‐Suoc a more efficient suppressor. , 1987, The EMBO journal.

[44]  B. Seong,et al.  Escherichia coli formylmethionine tRNA: mutations in GGGCCC sequence conserved in anticodon stem of initiator tRNAs affect initiation of protein synthesis and conformation of anticodon loop. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[45]  L. Regan,et al.  Polypeptide sequences essential for RNA recognition by an enzyme. , 1987, Science.

[46]  O. Uhlenbeck,et al.  Biochemical and physical characterization of an unmodified yeast phenylalanine transfer RNA transcribed in vitro. , 1988, Proceedings of the National Academy of Sciences of the United States of America.