Chromosomal Localization of Two Human Genes Involved in Phosphate Homeostasis: The Type IIb Sodium-Phosphate Cotransporter and Stanniocalcin-2

[1]  J. Minna,et al.  Deletions of chromosome 4 at multiple sites are frequent in malignant mesothelioma and small cell lung carcinoma. , 1999, Clinical cancer research : an official journal of the American Association for Cancer Research.

[2]  G. F. Wagner,et al.  Molecular cloning and characterization of stanniocalcin-related protein , 1998, Molecular and Cellular Endocrinology.

[3]  H. Hilfiker,et al.  Characterization of a murine type II sodium-phosphate cotransporter expressed in mammalian small intestine. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[4]  S. Sasaki,et al.  Molecular cloning of a second human stanniocalcin homologue (STC2). , 1998, Biochemical and biophysical research communications.

[5]  O. Mors,et al.  Support for the possible locus on chromosome 4p16 for bipolar affective disorder , 1998, Molecular Psychiatry.

[6]  R. Reddel,et al.  Identification of a second stanniocalcin cDNA in mouse and human: Stanniocalcin 2 , 1998, Molecular and Cellular Endocrinology.

[7]  N. Amizuka,et al.  Targeted inactivation of Npt2 in mice leads to severe renal phosphate wasting, hypercalciuria, and skeletal abnormalities. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[8]  R. Reddel,et al.  Human stanniocalcin (STC): genomic structure, chromosomal localization, and the presence of CAG trinucleotide repeats. , 1998, Genomics.

[9]  M. Speer,et al.  Autosomal dominant hypophosphatemic rickets is linked to chromosome 12p13. , 1997, The Journal of clinical investigation.

[10]  M. Permutt,et al.  Human cholecystokinin type A receptor gene: cytogenetic localization, physical mapping, and identification of two missense variants in patients with obesity and non-insulin-dependent diabetes mellitus (NIDDM). , 1997, Genomics.

[11]  M. Econs,et al.  Autosomal dominant hypophosphatemic rickets/osteomalacia: clinical characterization of a novel renal phosphate-wasting disorder. , 1997, The Journal of clinical endocrinology and metabolism.

[12]  G. Viglietto,et al.  Identification of a novel sarcoglycan gene at 5q33 encoding a sarcolemmal 35 kDa glycoprotein. , 1996, Human molecular genetics.

[13]  G. F. Wagner,et al.  Human stanniocalcin: a possible hormonal regulator of mineral metabolism. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[14]  M. Econs,et al.  Localization of a renal sodium-phosphate cotransporter gene to human chromosome 5q35. , 1994, Genomics.

[15]  H. Zoghbi,et al.  Molecular cloning of the cDNA encoding a human renal sodium phosphate transport protein and its assignment to chromosome 6p21.3-p23. , 1993, Genomics.

[16]  R. Mulivor,et al.  NIGMS human/rodent somatic cell hybrid mapping panels 1 and 2. , 1993, Genomics.

[17]  U. Liberman,et al.  Osteomalacia in hereditary hypophosphatemic rickets with hypercalciuria: a correlative clinical-histomorphometric study. , 1991, Journal of Clinical Endocrinology and Metabolism.

[18]  S. W. Wendelaar Bonga,et al.  Control of calcium regulating hormones in the vertebrates: parathyroid hormone, calcitonin, prolactin, and stanniocalcin. , 1991, International review of cytology.