Conditionally structured variational Gaussian approximation with importance weights
暂无分享,去创建一个
[1] David Duvenaud,et al. Sticking the Landing: Simple, Lower-Variance Gradient Estimators for Variational Inference , 2017, NIPS.
[2] Jimmy Ba,et al. Adam: A Method for Stochastic Optimization , 2014, ICLR.
[4] Ferenc Huszár,et al. Variational Inference using Implicit Distributions , 2017, ArXiv.
[5] Samy Bengio,et al. Density estimation using Real NVP , 2016, ICLR.
[6] Thomas P. Minka,et al. Divergence measures and message passing , 2005 .
[7] J. Magnus,et al. Matrix Differential Calculus with Applications in Statistics and Econometrics (Revised Edition) , 1999 .
[8] Justin Domke,et al. Importance Weighting and Variational Inference , 2018, NeurIPS.
[9] Edoardo M. Airoldi,et al. Copula variational inference , 2015, NIPS.
[10] Andrew Phillips,et al. Efficient Amortised Bayesian Inference for Hierarchical and Nonlinear Dynamical Systems , 2019, ICML.
[11] Max Welling,et al. Improved Variational Inference with Inverse Autoregressive Flow , 2016, NIPS 2016.
[12] Ryan P. Adams,et al. Variational Boosting: Iteratively Refining Posterior Approximations , 2016, ICML.
[13] Xiangyu Wang,et al. Boosting Variational Inference , 2016, ArXiv.
[14] George Tucker,et al. Doubly Reparameterized Gradient Estimators for Monte Carlo Objectives , 2019, ICLR.
[15] Shakir Mohamed,et al. Variational Inference with Normalizing Flows , 2015, ICML.
[16] Il Memming Park,et al. BLACK BOX VARIATIONAL INFERENCE FOR STATE SPACE MODELS , 2015, 1511.07367.
[17] David J. Nott,et al. Gaussian variational approximation with sparse precision matrices , 2016, Statistics and Computing.
[18] A. Rényi. On Measures of Entropy and Information , 1961 .
[19] Miguel Lázaro-Gredilla,et al. Doubly Stochastic Variational Bayes for non-Conjugate Inference , 2014, ICML.
[20] P. Thall,et al. Some covariance models for longitudinal count data with overdispersion. , 1990, Biometrics.
[21] N. Breslow,et al. Approximate inference in generalized linear mixed models , 1993 .
[22] N. Laird,et al. A likelihood-based method for analysing longitudinal binary responses , 1993 .
[23] Ricardo Silva,et al. Alpha-Beta Divergence For Variational Inference , 2018, ArXiv.
[24] Hugo Larochelle,et al. MADE: Masked Autoencoder for Distribution Estimation , 2015, ICML.
[25] Richard E. Turner,et al. Rényi Divergence Variational Inference , 2016, NIPS.
[26] David M. Blei,et al. Variational Inference: A Review for Statisticians , 2016, ArXiv.
[27] David B. Dunson,et al. Variational Gaussian Copula Inference , 2015, AISTATS.
[28] Ruslan Salakhutdinov,et al. Importance Weighted Autoencoders , 2015, ICLR.
[29] Yee Whye Teh,et al. Filtering Variational Objectives , 2017, NIPS.
[30] James C. Spall,et al. Introduction to stochastic search and optimization - estimation, simulation, and control , 2003, Wiley-Interscience series in discrete mathematics and optimization.
[31] Linda S. L. Tan,et al. Model reparametrization for improving variational inference , 2018, 1805.07267.
[32] Adam J. Rothman,et al. A new approach to Cholesky-based covariance regularization in high dimensions , 2009, 0903.0645.
[33] Daan Wierstra,et al. Stochastic Backpropagation and Approximate Inference in Deep Generative Models , 2014, ICML.
[34] Gregor Kastner,et al. Ancillarity-sufficiency interweaving strategy (ASIS) for boosting MCMC estimation of stochastic volatility models , 2014, Comput. Stat. Data Anal..
[35] James C. Spall,et al. Introduction to Stochastic Search and Optimization. Estimation, Simulation, and Control (Spall, J.C. , 2007 .
[36] Tim Salimans,et al. Fixed-Form Variational Posterior Approximation through Stochastic Linear Regression , 2012, ArXiv.
[37] David J. Nott,et al. High-Dimensional Copula Variational Approximation Through Transformation , 2019 .
[38] M. Wand,et al. Explaining Variational Approximations , 2010 .
[39] Dustin Tran,et al. Hierarchical Variational Models , 2015, ICML.
[40] Max Welling,et al. Auto-Encoding Variational Bayes , 2013, ICLR.
[41] David M. Blei,et al. Stochastic Structured Variational Inference , 2014, AISTATS.
[42] Jan R. Magnus,et al. The Elimination Matrix: Some Lemmas and Applications , 1980, SIAM J. Algebraic Discret. Methods.
[43] Peter Harremoës,et al. Rényi Divergence and Kullback-Leibler Divergence , 2012, IEEE Transactions on Information Theory.
[44] Gareth O. Roberts,et al. A General Framework for the Parametrization of Hierarchical Models , 2007, 0708.3797.
[45] Michael I. Jordan,et al. Improving the Mean Field Approximation Via the Use of Mixture Distributions , 1999, Learning in Graphical Models.
[46] Linda S. L. Tan,et al. Variational Inference for Generalized Linear Mixed Models Using Partially Noncentered Parametrizations , 2012, 1205.3906.
[47] M. J. Bayarri,et al. Non-Centered Parameterisations for Hierarchical Models and Data Augmentation , 2003 .
[48] P. Diggle,et al. Analysis of Longitudinal Data. , 1997 .
[49] Debdeep Pati,et al. $\alpha $-variational inference with statistical guarantees , 2017, The Annals of Statistics.
[50] Gareth O. Roberts,et al. Non-centred parameterisations for hierarchical models and data augmentation. , 2003 .
[51] J. Magnus,et al. Matrix Differential Calculus with Applications in Statistics and Econometrics , 1991 .
[52] Youssef M. Marzouk,et al. Inference via Low-Dimensional Couplings , 2017, J. Mach. Learn. Res..