The tame and the wild automorphisms of polynomial rings in three variables
暂无分享,去创建一个
[1] U. Umirbaev,et al. Poisson brackets and two-generated subalgebras of rings of polynomials , 2003 .
[2] Heinrich W. E. Jung. Über ganze birationale Transformationen der Ebene. , 1942 .
[3] Tame and wild coordinates of Z[x,y] , 2004 .
[4] H. Bass. A non-triangular action ofGa on A3 , 1984 .
[5] A. V. D. Essen,et al. Polynomial Automorphisms and the Jacobian Conjecture , 2000, Frontiers in Mathematics.
[6] D. Wright,et al. Stably tame automorphisms , 1998 .
[7] H. Bass. Automorphisms of polynomial rings , 1983 .
[8] P. Cohn. Free rings and their relations , 1973 .
[9] Anastasia J. Czerniakiewicz. Automorphisms of a free associative algebra of rank 2. II , 1971 .
[10] U. Umirbaev. Universal derivations and subalgebras of free algebras , 1996 .
[11] I. Shestakov. Quantization of poisson superalgebras and speciality of jordan poisson superalgebras , 1993 .
[12] Tame and Wild Coordinates of , 2000 .
[13] A. Czerniakiewicz. Automorphisms of a free associative algebra of rank 2. II , 1971 .
[14] David Shannon,et al. Using Gröbner Bases to Determine Algebra Membership Split Surjective Algebra Homomorphisms Determine Birational Equivalence , 1988, J. Symb. Comput..
[15] Lorenzo Robbiano,et al. Computational aspects of commutative algebra , 1989 .