Band alignment of epitaxial ZnS/Zn3P2 heterojunctions
暂无分享,去创建一个
N. Lewis | H. Atwater | G. Kimball | S. Demers | J. Bosco
[1] N. Lewis,et al. Pseudomorphic growth and strain relaxation of α-Zn3P2 on GaAs(001) by molecular beam epitaxy , 2013 .
[2] N. Lewis,et al. Passivation of Zn3P2 substrates by aqueous chemical etching and air oxidation , 2012 .
[3] H. Atwater,et al. Molecular beam epitaxy of n-type ZnS: A wide band gap emitter for heterojunction PV devices , 2012, 2012 38th IEEE Photovoltaic Specialists Conference.
[4] S. Demers,et al. Intrinsic Defects and Dopability of Zinc Phosphide , 2012, 1203.0584.
[5] N. Lewis,et al. Photoluminescence-based measurements of the energy gap and diffusion length of Zn3P2 , 2009 .
[6] T. Nakada,et al. High-efficiency Cu(In,Ga)Se2 thin-film solar cells with a CBD-ZnS buffer layer , 2001 .
[7] Ju-Young Lee,et al. Photoluminescence study on the effects of the surface of CdTe by surface passivation , 1999 .
[8] M. Bhushan,et al. Polycrystalline Zn3P2 Schottky barrier solar cells , 1998 .
[9] Burke,et al. Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.
[10] G. Kresse,et al. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .
[11] K. Kakishita,et al. Zn3P2 photovoltaic film growth for Zn3P2/ZnSe solar cell , 1994 .
[12] Akihiko Yoshikawa,et al. Growth and properties of iodine-doped ZnS films grown by low-pressure MOCVD using ethyliodine as a dopant source , 1990 .
[13] L. Kazmerski,et al. Valence‐band electronic structure of Zn3P2 as a function of annealing as studied by synchrotron radiation photoemission , 1990 .
[14] C. J. Keavney,et al. Wide-bandgap epitaxial heterojunction windows for silicon solar cells , 1990 .
[15] Akira Suzuki,et al. Homoepitaxial growth of low-resistivity-Al-doped ZnS single crystal films by molecular beam epitaxy , 1989 .
[16] W. Ching,et al. An effective dipole theory for band lineups in semiconductor heterojunctions , 1987 .
[17] A. Fahrenbruch,et al. Properties of zinc‐phosphide junctions and interfaces , 1987 .
[18] S. Kurita,et al. Polycrystalline Zn3P2/Indium-Tin Oxide Solar Cells , 1983 .
[19] E. A. Kraut,et al. Semiconductor core-level to valence-band maximum binding-energy differences: Precise determination by x-ray photoelectron spectroscopy , 1983 .
[20] J. Pawlikowski. Absorption edge of Zn 3 P 2 , 1982 .
[21] A. Catalano,et al. Zinc phosphide‐zinc oxide heterojunction solar cells , 1981 .
[22] L. Kazmerski,et al. Surface and interface properties of Zn3P2 solar cells , 1981 .
[23] E. A. Kraut,et al. Precise Determination of the Valence-Band Edge in X-Ray Photoemission Spectra: Application to Measurement of Semiconductor Interface Potentials , 1980 .
[24] H. Hovel,et al. Photoluminescent properties of GaAs–GaAlAs, GaAs–oxide, and GaAs–ZnS heterojunctions , 1979 .
[25] D. A. Shirley,et al. High-Resolution X-Ray Photoemission Spectrum of the Valence Bands of Gold , 1972 .
[26] R. K. Swank,et al. Surface properties of II-VI compounds , 1966 .
[27] R.L. Anderson,et al. Experiments on Ge-GaAs heterojunctions , 1962, IRE Transactions on Electron Devices.
[28] T. Jones,et al. Atomic hydrogen cleaning of GaAs(001): a scanning tunnelling microscopy study [rapid communication] , 2004 .
[29] Alfonso Franciosi,et al. Heterojunction band offset engineering , 1996 .
[30] M. Bhushan. Schottky solar cells on thin polycrystalline Zn3P2 films , 1982 .
[31] K W Mitchell,et al. Status of New Thin-Film Photovoltaic Technologies , 1982 .