Band alignment of epitaxial ZnS/Zn3P2 heterojunctions

The energy-band alignment of epitaxial zb-ZnS(001)/α-Zn_(3)P_(2)(001) heterojunctions has been determined by measurement of shifts in the phosphorus 2p and sulfur 2p core-level binding energies for various thicknesses (0.6–2.2 nm) of ZnS grown by molecular beam epitaxy on Zn_(3)P_(2). In addition, the position of the valence-band maximum for bulk ZnS and Zn3P2 films was estimated using density functional theory calculations of the valence-band density-of-states. The heterojunction was observed to be type I, with a valence-band offset, ΔE_V, of −1.19 ± 0.07 eV, which is significantly different from the type II alignment based on electron affinities that is predicted by Anderson theory. n^(+)-ZnS/p-Zn_(3)P_(2) heterojunctions demonstrated open-circuit voltages of >750 mV, indicating passivation of the Zn_(3)P_(2) surface due to the introduction of the ZnS overlayer. Carrier transport across the heterojunction devices was inhibited by the large conduction-band offset, which resulted in short-circuit current densities of <0.1 mA cm^(−2) under 1 Sun simulated illumination. Hence, constraints on the current density will likely limit the direct application of the ZnS/Zn_(3)P_(2) heterojunction to photovoltaics, whereas metal-insulator-semiconductor structures that utilize an intrinsic ZnS insulating layer appear promising.

[1]  N. Lewis,et al.  Pseudomorphic growth and strain relaxation of α-Zn3P2 on GaAs(001) by molecular beam epitaxy , 2013 .

[2]  N. Lewis,et al.  Passivation of Zn3P2 substrates by aqueous chemical etching and air oxidation , 2012 .

[3]  H. Atwater,et al.  Molecular beam epitaxy of n-type ZnS: A wide band gap emitter for heterojunction PV devices , 2012, 2012 38th IEEE Photovoltaic Specialists Conference.

[4]  S. Demers,et al.  Intrinsic Defects and Dopability of Zinc Phosphide , 2012, 1203.0584.

[5]  N. Lewis,et al.  Photoluminescence-based measurements of the energy gap and diffusion length of Zn3P2 , 2009 .

[6]  T. Nakada,et al.  High-efficiency Cu(In,Ga)Se2 thin-film solar cells with a CBD-ZnS buffer layer , 2001 .

[7]  Ju-Young Lee,et al.  Photoluminescence study on the effects of the surface of CdTe by surface passivation , 1999 .

[8]  M. Bhushan,et al.  Polycrystalline Zn3P2 Schottky barrier solar cells , 1998 .

[9]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[10]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[11]  K. Kakishita,et al.  Zn3P2 photovoltaic film growth for Zn3P2/ZnSe solar cell , 1994 .

[12]  Akihiko Yoshikawa,et al.  Growth and properties of iodine-doped ZnS films grown by low-pressure MOCVD using ethyliodine as a dopant source , 1990 .

[13]  L. Kazmerski,et al.  Valence‐band electronic structure of Zn3P2 as a function of annealing as studied by synchrotron radiation photoemission , 1990 .

[14]  C. J. Keavney,et al.  Wide-bandgap epitaxial heterojunction windows for silicon solar cells , 1990 .

[15]  Akira Suzuki,et al.  Homoepitaxial growth of low-resistivity-Al-doped ZnS single crystal films by molecular beam epitaxy , 1989 .

[16]  W. Ching,et al.  An effective dipole theory for band lineups in semiconductor heterojunctions , 1987 .

[17]  A. Fahrenbruch,et al.  Properties of zinc‐phosphide junctions and interfaces , 1987 .

[18]  S. Kurita,et al.  Polycrystalline Zn3P2/Indium-Tin Oxide Solar Cells , 1983 .

[19]  E. A. Kraut,et al.  Semiconductor core-level to valence-band maximum binding-energy differences: Precise determination by x-ray photoelectron spectroscopy , 1983 .

[20]  J. Pawlikowski Absorption edge of Zn 3 P 2 , 1982 .

[21]  A. Catalano,et al.  Zinc phosphide‐zinc oxide heterojunction solar cells , 1981 .

[22]  L. Kazmerski,et al.  Surface and interface properties of Zn3P2 solar cells , 1981 .

[23]  E. A. Kraut,et al.  Precise Determination of the Valence-Band Edge in X-Ray Photoemission Spectra: Application to Measurement of Semiconductor Interface Potentials , 1980 .

[24]  H. Hovel,et al.  Photoluminescent properties of GaAs–GaAlAs, GaAs–oxide, and GaAs–ZnS heterojunctions , 1979 .

[25]  D. A. Shirley,et al.  High-Resolution X-Ray Photoemission Spectrum of the Valence Bands of Gold , 1972 .

[26]  R. K. Swank,et al.  Surface properties of II-VI compounds , 1966 .

[27]  R.L. Anderson,et al.  Experiments on Ge-GaAs heterojunctions , 1962, IRE Transactions on Electron Devices.

[28]  T. Jones,et al.  Atomic hydrogen cleaning of GaAs(001): a scanning tunnelling microscopy study [rapid communication] , 2004 .

[29]  Alfonso Franciosi,et al.  Heterojunction band offset engineering , 1996 .

[30]  M. Bhushan Schottky solar cells on thin polycrystalline Zn3P2 films , 1982 .

[31]  K W Mitchell,et al.  Status of New Thin-Film Photovoltaic Technologies , 1982 .