Convergence Analysis for Three Parareal Solvers

We analyze in this paper the convergence properties of the parareal algorithm for the symmetric positive definite problem $\mathbf{u}'+A\mathbf{u}=g$. The coarse propagator $\mathcal{G}$ is fixed to the backward-Euler method and three time integrators are chosen for the $\mathcal{F}$-propagator: the trapezoidal rule, the third-order diagonal implicit Runge--Kutta (RK) (DIRK) method, and the fourth-order Gauss RK method. It is well known that the Parareal-Euler algorithm using the backward-Euler method for $\mathcal{F}$ and $\mathcal{G}$ converges rapidly, but less is known when one uses for $\mathcal{F}$ the trapezoidal rule, or the fourth-order Gauss RK method, especially when the mesh ratio $J(=\Delta T/\Delta t)$ is small. We show that for a specified $\lambda_{\max}$(the maximal eigenvalue of $A$ or its upper bound), there exists some critical $J_{\rm cri}$ such that the parareal solvers derived from these three choices of $\mathcal{F}$ converge as fast as Parareal-Euler, provided $J\geq J_{\rm cri}$....

[1]  Martin J. Gander,et al.  Analysis of a Krylov subspace enhanced parareal algorithm for linear problems , 2008 .

[2]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[3]  Yvon Maday,et al.  Parareal in Time Intermediate Targets Methods for Optimal Control Problems , 2012, Control and Optimization with PDE Constraints.

[4]  Martin J. Gander,et al.  Analysis of the Parareal Time-Parallel Time-Integration Method , 2007, SIAM J. Sci. Comput..

[5]  Charbel Farhat,et al.  Time‐decomposed parallel time‐integrators: theory and feasibility studies for fluid, structure, and fluid–structure applications , 2003 .

[6]  Giovanni Samaey,et al.  A Micro-Macro Parareal Algorithm: Application to Singularly Perturbed Ordinary Differential Equations , 2012, SIAM J. Sci. Comput..

[7]  Yvon Maday,et al.  Monotonic Parareal Control for Quantum Systems , 2007, SIAM J. Numer. Anal..

[8]  Jie Shen,et al.  Efficient stochastic Galerkin methods for random diffusion equations , 2009, J. Comput. Phys..

[9]  Christian E. Schaerer,et al.  Analysis of Block Parareal Preconditioners for Parabolic Optimal Control Problems , 2010, SIAM J. Sci. Comput..

[10]  Elena Celledoni,et al.  Norges Teknisk-naturvitenskapelige Universitet Parallelization in Time for Thermo-viscoplastic Problems in Extrusion of Aluminium Parallelization in Time for Thermo-viscoplastic Problems in Extrusion of Aluminium , 2022 .

[11]  Tao Tang,et al.  Parallel in Time Algorithm with Spectral-Subdomain Enhancement for Volterra Integral Equations , 2013, SIAM J. Numer. Anal..

[12]  Cem Çelik,et al.  Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative , 2012, J. Comput. Phys..

[13]  Raúl Sánchez,et al.  Mechanisms for the convergence of time-parallelized, parareal turbulent plasma simulations , 2012, J. Comput. Phys..

[14]  Martin J. Gander,et al.  Analysis of Two Parareal Algorithms for Time-Periodic Problems , 2013, SIAM J. Sci. Comput..

[15]  Raúl Sánchez,et al.  An analytic model for the convergence of turbulent simulations time-parallelized via the parareal algorithm , 2013, J. Comput. Phys..

[16]  Yangquan Chen,et al.  Matrix approach to discrete fractional calculus II: Partial fractional differential equations , 2008, J. Comput. Phys..

[17]  Y. Maday,et al.  Symmetric parareal algorithms for Hamiltonian systems , 2010, 1011.6222.

[18]  Michael L. Minion,et al.  TOWARD AN EFFICIENT PARALLEL IN TIME METHOD FOR PARTIAL DIFFERENTIAL EQUATIONS , 2012 .

[19]  Michael L. Minion,et al.  A HYBRID PARAREAL SPECTRAL DEFERRED CORRECTIONS METHOD , 2010 .

[20]  Einar M. Rønquist,et al.  Stability of the Parareal Algorithm , 2005 .

[21]  Martin J. Gander,et al.  Analysis for parareal algorithms applied to Hamiltonian differential equations , 2014, J. Comput. Appl. Math..

[22]  Charbel Farhat,et al.  A time‐parallel implicit method for accelerating the solution of non‐linear structural dynamics problems , 2009 .

[23]  Li-Ping He,et al.  Parareal in Time Simulation Of Morphological Transformation in Cubic Alloys with Spatially Dependent Composition , 2012 .

[24]  Baochang Shi,et al.  Parareal-Richardson Algorithm for Solving Nonlinear ODEs and PDEs , 2009 .

[25]  Shu-Lin Wu,et al.  Convergence analysis of some second-order parareal algorithms , 2015 .

[26]  Xiaoying Dai,et al.  Stable Parareal in Time Method for First- and Second-Order Hyperbolic Systems , 2012, SIAM J. Sci. Comput..