Life-space foam: A medium for motivational and cognitive dynamics

General stochastic dynamics, developed in a framework of Feynman path integrals, have been applied to Lewinian field-theoretic psychodynamics [K. Lewin, Field Theory in Social Science, University of Chicago Press, Chicago, 1951; K. Lewin, Resolving Social Conflicts, and, Field Theory in Social Science, American Psychological Association, Washington, 1997; M. Gold, A Kurt Lewin Reader, the Complete Social Scientist, American Psychological Association, Washington, 1999], resulting in the development of a new concept of life-space foam (LSF) as a natural medium for motivational and cognitive psychodynamics. According to LSF formalisms, the classic Lewinian life space can be macroscopically represented as a smooth manifold with steady force fields and behavioral paths, while at the microscopic level it is more realistically represented as a collection of wildly fluctuating force fields, (loco)motion paths and local geometries (and topologies with holes). A set of least-action principles is used to model the smoothness of global, macro-level LSF paths, fields and geometry. To model the corresponding local, micro-level LSF structures, an adaptive path integral is used, defining a multi-phase and multi-path (multi-field and multi-geometry) transition process from intention to goal-driven action. Application examples of this new approach include (but are not limited to) information processing, motivational fatigue, learning, memory and decision making.

[1]  John D. Bransford,et al.  The abstraction of linguistic ideas , 1971 .

[2]  Vladimir G. Ivancevic,et al.  Brain-like functor control machine for general humanoid biodynamics , 2005, Int. J. Math. Math. Sci..

[3]  P. Dirac Principles of Quantum Mechanics , 1982 .

[4]  J. Klauder Beyond Conventional Quantization , 1999 .

[5]  J. Wheeler,et al.  Classical Electrodynamics in Terms of Direct Interparticle Action , 1949 .

[6]  P. Ramond,et al.  Field Theory: A Modern Primer , 1981 .

[7]  Michael F. Wehner,et al.  Numerical evaluation of path-integral solutions to Fokker-Planck equations. II. Restricted stochastic processes , 1983 .

[8]  S. Sternberg Memory-scanning: mental processes revealed by reaction-time experiments. , 1969, American scientist.

[9]  G. A. Miller THE PSYCHOLOGICAL REVIEW THE MAGICAL NUMBER SEVEN, PLUS OR MINUS TWO: SOME LIMITS ON OUR CAPACITY FOR PROCESSING INFORMATION 1 , 1956 .

[10]  R. Bogartz,et al.  The future of dynamic systems models in developmental psychology in the light of the past. , 1994, Journal of experimental child psychology.

[11]  Ken Loo A Rigorous Real Time Feynman Path Integral , 2008 .

[12]  Vladimir Ivancevic,et al.  Symplectic Rotational Geometry in Human Biomechanics , 2004, SIAM Rev..

[13]  S. Swain Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences , 1984 .

[14]  R. Feynman Statistical Mechanics, A Set of Lectures , 1972 .

[15]  K. Lewin,et al.  Resolving social conflicts and field theory in social science. , 1997 .

[16]  R. Graham,et al.  Path-integral methods in Nonequilibrium Thermodynamics and statistics , 1978 .

[17]  J A Kelso,et al.  Dynamic pattern generation in behavioral and neural systems. , 1988, Science.

[18]  R. Feynman,et al.  Quantum Mechanics and Path Integrals , 1965 .

[19]  Linda B. Smith,et al.  A dynamic systems approach to development: Applications. , 1993 .

[20]  Roger Ratcliff,et al.  A Theory of Memory Retrieval. , 1978 .

[21]  E. M.,et al.  Statistical Mechanics , 2021, Manual for Theoretical Chemistry.

[22]  Lester Ingber Statistical mechanics of neocortical interactions: Applications of canonical momenta indicators to electroencephalography , 1997 .

[23]  N. Bernstein Chapter IV Some Emergent Problems of the Regulation of Motor Acts , 1984 .

[24]  E. Aidman,et al.  From being motivated to motivating oneself: A Vygotskian perspective , 1991 .

[25]  H. B. English Resolving social conflicts. , 1949 .

[26]  K. Haller Quantum Electrodynamics , 1979, Nature.

[27]  W. Heitler The Principles of Quantum Mechanics , 1947, Nature.

[28]  J. Townsend,et al.  Decision field theory: a dynamic-cognitive approach to decision making in an uncertain environment. , 1993, Psychological review.

[29]  D. Broadbent Perception and communication , 1958 .

[30]  K. Lewin Field theory in social science , 1951 .

[31]  E. Tirapegui,et al.  SHORT DERIVATION OF FEYNMAN LAGRANGIAN FOR GENERAL DIFFUSION PROCESSES , 1980 .

[32]  J. Beckmann,et al.  Action control : from cognition to behavior , 1985 .

[33]  R. Feynman An Operator calculus having applications in quantum electrodynamics , 1951 .

[34]  S. Hinshaw Commentary on Meehl , 2004 .

[35]  S. Grossberg,et al.  Neural dynamics of decision making under risk: affective balance and cognitive-emotional interactions. , 1988, Psychological review.

[36]  Tom Leinster Operads in Higher-Dimensional Category Theory , 2000 .

[37]  Tom Leinster A Survey of Definitions of n-Category , 2001 .

[38]  J. Piaget The Grasp of Consciousness: Action and Concept in the Young Child , 1976 .

[39]  W. G. Wolfer,et al.  Numerical evaluation of path-integral solutions to Fokker-Planck equations. III. Time and functionally dependent coefficients. , 1987, Physical review. A, General physics.

[40]  I. J. Myung,et al.  Toward a method of selecting among computational models of cognition. , 2002, Psychological review.

[41]  Gary Klein,et al.  Naturalistic Decision Making , 2008, Hum. Factors.

[42]  J. Townsend,et al.  Multialternative Decision Field Theory: A Dynamic Connectionist Model of Decision Making , 2001 .

[43]  S. Albeverio Nonstandard Methods in Stochastic Analysis and Mathematical Physics , 1986 .

[44]  Linda B. Smith,et al.  A Dynamic Systems Approach to the Development of Cognition and Action , 2007, Journal of Cognitive Neuroscience.

[45]  J. Kuhl Volitional Mediators of Cognition-Behavior Consistency: Self-Regulatory Processes and Action Versus , 1985 .

[46]  Robert F. Port,et al.  MIND IN MOTION: , 2019, Dune.

[47]  Peter D. Eimas,et al.  Categorization in early infancy and the continuity of development , 1994, Cognition.

[48]  V. Ivancevic GENERALIZED HAMILTONIAN BIODYNAMICS AND TOPOLOGY INVARIANTS OF HUMANOID ROBOTS , 2002 .

[49]  Mary Ann Metzger,et al.  Applications of Nonlinear Dynamical Systems Theory in Developmental Psychology: Motor and Cognitive Development , 1997 .

[50]  M. Ashcraft Human memory and cognition , 1989 .

[51]  Shun-ichi Amari,et al.  Differential-geometrical methods in statistics , 1985 .

[52]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[53]  P. Seglar,et al.  Stochastic Processes in Nonequilibrium Systems , 1978 .

[54]  M. Ross Quillian,et al.  Retrieval time from semantic memory , 1969 .

[55]  F. Craik,et al.  Levels of Pro-cessing: A Framework for Memory Research , 1975 .

[56]  D. Lewkowicz,et al.  A dynamic systems approach to the development of cognition and action. , 2007, Journal of cognitive neuroscience.

[57]  Lester Ingber,et al.  Statistical mechanics of neocortical interactions : Canonical momenta indicators of electroencephalography , 1995 .

[58]  N. A. Bernshteĭn,et al.  Human motor actions : Bernstein reassessed , 1984 .

[59]  Ken Loo A Rigorous Real Time Feynman Path Integral and Propagator , 2008 .

[60]  Michael T. Turvey,et al.  Some dynamical themes in perception and action , 1996 .

[61]  S. Grossberg Neural Networks and Natural Intelligence , 1988 .

[62]  Path integral quantization and Riemannian-symplectic manifolds , 1998, quant-ph/9805014.

[63]  E. Capaldi,et al.  The organization of behavior. , 1992, Journal of applied behavior analysis.

[64]  T. Leinster A survey of definitions of -category. , 2002 .

[65]  Lester Ingber,et al.  Statistical mechanics of neocortical interactions: Training and testing canonical momenta indicators of EEG , 1998, physics/0001053.