The effect of swirl on jets and wakes: Linear instability of the Rankine vortex with axial flow

The effect of swirl on jets and wakes is investigated by analyzing the inviscid spatiotemporal instability of the Rankine vortex with superimposed plug flow axial velocity profile. The linear dispersion relation is derived analytically as a function of two nondimensional control parameters: the swirl ratio S and the external axial flow parameter a (a>−0.5 for jets, a<−0.5 for wakes). For each azimuthal wave number m, there exists a single unstable Kelvin–Helmholtz mode and an infinite number of neutrally stable inertial waveguide modes. Swirl decreases the temporal growth rate of the axisymmetric Kelvin–Helmholtz mode (m=0), which nonetheless remains unstable for all axial wave numbers. For helical modes (m≠0), small amounts of swirl lead to the widespread occurrence of direct resonances between the unstable Kelvin–Helmholtz mode and the inertial waveguide modes. Such interactions generate, in the low wave number range, neutrally stable wave number bands separated by bubbles of instability. As S increases...

[1]  Thomas B. Gatski,et al.  A criterion for vortex breakdown , 1987 .

[2]  Dennis K. McLaughlin,et al.  Experiments on the instabilities of a swirling jet , 1994 .

[3]  Mehdi R. Khorrami,et al.  Stability of a compressible axisymmetric swirling jet , 1995 .

[4]  Martin Lessen,et al.  The stability of a trailing line vortex. Part 1. Inviscid theory , 1974, Journal of Fluid Mechanics.

[5]  D. W. Moore,et al.  The motion of a vortex filament with axial flow , 1972, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[6]  Lord Kelvin,et al.  Vibrations of a columnar vortex , 1880 .

[7]  P. Huerre,et al.  Absolute/convective instability of the Batchelor vortex , 1996 .

[8]  R. Caflisch,et al.  The collapse of an axi-symmetric, swirling vortex sheet , 1993 .

[9]  R. Lingwood,et al.  Absolute instability of the boundary layer on a rotating disk , 1995, Journal of Fluid Mechanics.

[10]  A. E. Gill,et al.  Analysis of the stability of axisymmetric jets , 1962, Journal of Fluid Mechanics.

[11]  Bending waves on inviscid columnar vortices , 1986 .

[12]  S. Widnall,et al.  Examination of group-velocity criterion for breakdown of vortex flow in a divergent duct , 1980 .

[13]  J. Chomaz,et al.  Experimental study of vortex breakdown in swirling jets , 1998, Journal of Fluid Mechanics.

[14]  Mehdi R. Khorrami,et al.  On the viscous modes of instability of a trailing line vortex , 1991, Journal of Fluid Mechanics.

[15]  Jean-Marc Chomaz,et al.  Absolute/convective instabilities in the Batchelor vortex: a numerical study of the linear impulse response , 1998, Journal of Fluid Mechanics.

[16]  Sidney Leibovich,et al.  A sufficient condition for the instability of columnar vortices , 1983, Journal of Fluid Mechanics.

[17]  S. W. Thomson,et al.  XXIV. Vibrations of a columnar vortex , 1880 .

[18]  Peter A. Monkewitz,et al.  The effect of nonuniform density on the absolute instability of two‐dimensional inertial jets and wakes , 1990 .

[19]  Kenneth G. Powell,et al.  Viscous and inviscid instabilities of a trailing vortex , 1992, Journal of Fluid Mechanics.

[20]  T. Sarpkaya On stationary and travelling vortex breakdowns , 1971, Journal of Fluid Mechanics.

[21]  J. E. Martin,et al.  On the stability of the swirling jet shear layer , 1994 .

[22]  T. Brooke Benjamin,et al.  Theory of the vortex breakdown phenomenon , 1962, Journal of Fluid Mechanics.

[23]  P. Monkewitz,et al.  LOCAL AND GLOBAL INSTABILITIES IN SPATIALLY DEVELOPING FLOWS , 1990 .