High performance computation of radiative transfer equation using the finite element method

Abstract This article deals with an efficient strategy for numerically simulating radiative transfer phenomena using distributed computing. The finite element method alongside the discrete ordinate method is used for spatio-angular discretization of the monochromatic steady-state radiative transfer equation in an anisotropically scattering media. Two very different methods of parallelization, angular and spatial decomposition methods, are presented. To do so, the finite element method is used in a vectorial way. A detailed comparison of scalability, performance, and efficiency on thousands of processors is established for two- and three-dimensional heterogeneous test cases. Timings show that both algorithms scale well when using proper preconditioners. It is also observed that our angular decomposition scheme outperforms our domain decomposition method. Overall, we perform numerical simulations at scales that were previously unattainable by standard radiative transfer equation solvers.

[1]  Guido Kanschat,et al.  Radiative transfer with finite elements. I. Basic method and tests , 2001 .

[2]  Gautham Krishnamoorthy,et al.  PARALLEL COMPUTATIONS OF RADIATIVE HEAT TRANSFER USING THE DISCRETE ORDINATES METHOD , 2004 .

[3]  W. Bangerth,et al.  deal.II—A general-purpose object-oriented finite element library , 2007, TOMS.

[4]  J. N. Reddy,et al.  Finite-Element Solution of Integral Equations Arising in Radiative Heat Transfer and Laminar Boundary-Layer Theory , 1978 .

[5]  Hongkai Zhao,et al.  A Fast-Forward Solver of Radiative Transfer Equation , 2009 .

[6]  Bořek Patzák,et al.  OOFEM — an Object-oriented Simulation Tool for Advanced Modeling of Materials and Structures , 2012 .

[7]  W. Fiveland Discrete-Ordinates Solutions of the Radiative Transport Equation for Rectangular Enclosures , 1984 .

[8]  Y. Favennec,et al.  Solution of the 2-D steady-state radiative transfer equation in participating media with specular reflections using SUPG and DG finite elements , 2016 .

[9]  M. Pinar Mengüç,et al.  Thermal Radiation Heat Transfer , 2020 .

[10]  H. Schwarz Ueber einige Abbildungsaufgaben. , 1869 .

[11]  Pedro J. Coelho,et al.  The role of ray effects and false scattering on the accuracy of the standard and modified discrete ordinates methods , 2002 .

[12]  J. Gautrais,et al.  Integral formulation of null-collision Monte Carlo algorithms , 2013 .

[13]  Li-Ming Ruan,et al.  The study on approximating the open boundary of two-dimension medium as one black wall , 2004 .

[14]  Gautham Krishnamoorthy,et al.  Parallelization of the P-1 Radiation Model , 2006 .

[15]  Clinton P. T. Groth,et al.  Solution of the equation of radiative transfer using a Newton-Krylov approach and adaptive mesh refinement , 2012, J. Comput. Phys..

[16]  M.M.R. Williams,et al.  Recent progress in the application of the finite element method to the neutron transport equation , 1984 .

[17]  Danny Lathouwers,et al.  A space-angle DGFEM approach for the Boltzmann radiation transport equation with local angular refinement , 2015, J. Comput. Phys..

[18]  Andreas H. Hielscher,et al.  Three-dimensional optical tomography with the equation of radiative transfer , 2000, J. Electronic Imaging.

[19]  Juan Pablo Trelles,et al.  Spatial and angular finite element method for radiative transfer in participating media , 2015 .

[20]  M. Modest Radiative heat transfer , 1993 .

[21]  Christon,et al.  Spatial domain-based parallelism in large-scale, participating-media, radiative transport applications , 1997 .

[22]  Ryan G. McClarren,et al.  A modified implicit Monte Carlo method for time-dependent radiative transfer with adaptive material coupling , 2009, J. Comput. Phys..

[23]  Euntaek Lee,et al.  Elliptic formulation of the Simplified Spherical Harmonics Method in radiative heat transfer , 2014 .

[24]  Patrick Amestoy,et al.  MUMPS : A General Purpose Distributed Memory Sparse Solver , 2000, PARA.

[25]  Stefan T. Thynell,et al.  Discrete-ordinates method in radiative heat transfer , 1998 .

[26]  Dinshaw S. Balsara,et al.  Fast and accurate discrete ordinates methods for multidimensional radiative transfer. Part I, basic methods , 2001 .

[27]  C. R. Drumm,et al.  Parallel FE approximation of the even/odd-parity form of the linear Boltzmann equation , 2000 .

[28]  P. J. Coelho,et al.  Parallelization of the finite volume method for radiation heat transfer , 1999 .

[29]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[30]  Simon R. Arridge,et al.  Gauss–Newton reconstruction method for optical tomography using the finite element solution of the radiative transfer equation , 2008 .

[31]  C. E. Siewert,et al.  A high-order spherical harmonics solution to the standard problem in radiative transfer , 1984 .

[32]  L. Stenholm,et al.  An efficient method for the solution of 3-D radiative transfer problems , 1991 .

[33]  L. H. Howell,et al.  A Parallel AMR Implementation of The Discrete Ordinates Method for Radiation Transport , 2005 .

[34]  Suhas V. Patankar,et al.  RAY EFFECT AND FALSE SCATTERING IN THE DISCRETE ORDINATES METHOD , 1993 .

[35]  I. Max Krook,et al.  On the Solution of Equations of Transfer. , 1955 .

[36]  M. Pinar Mengüç,et al.  Radiation heat transfer in combustion systems , 1987 .

[37]  P.Ben Abdallah,et al.  Temperature field inside an absorbing–emitting semi-transparent slab at radiative equilibrium with variable spatial refractive index , 2000 .

[38]  Ramon Codina,et al.  Spatial approximation of the radiation transport equation using a subgrid-scale finite element method , 2011 .

[39]  Y. Favennec,et al.  3D Radiative Transfer Equation Coupled with Heat Conduction Equation with Realistic Boundary Conditions Applied on Complex Geometries , 2016 .

[40]  J. R. Howell,et al.  Monte carlo solution of thermal transfer through radiant media between gray walls. , 1964 .

[41]  Guido Kanschat,et al.  SOLUTION OF MULTI-DIMENSIONAL RADIATIVE TRANSFER PROBLEMS ON PARALLEL COMPUTERS , 2000 .

[42]  J. P. Jessee,et al.  Finite element formulation of the discrete-ordinates method for multidimensional geometries , 1994 .

[43]  Nancy M. Amato,et al.  Provably optimal parallel transport sweeps on regular grids , 2013 .

[44]  Pedro J. Coelho,et al.  PARALLELIZATION OF THE DISCRETE ORDINATES METHOD , 1997 .

[45]  C. P. Dullemond,et al.  An efficient algorithm for two-dimensional radiative transfer in axisymmetric circumstellar envelopes and disks , 2000 .

[46]  R. Alcouffe,et al.  Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissues. , 1998, Physics in medicine and biology.

[47]  U. Heidelberg,et al.  Radiative transfer with finite elements - II. Lyα line transfer in moving media , 2002, astro-ph/0206458.

[48]  Yousry Y. Azmy,et al.  Comparison via parallel performance models of angular and spatial domain decompositions for solving neutral particle transport problems , 2007 .

[49]  S. Van Criekingen,et al.  parafish: A parallel FE–PN neutron transport solver based on domain decomposition , 2011 .

[50]  Frédéric Hecht,et al.  New development in freefem++ , 2012, J. Num. Math..

[51]  Y. Y. Azmy,et al.  Multiprocessing for neutron diffusion and deterministic transport methods , 1997 .

[52]  I. Lux Monte Carlo Particle Transport Methods: Neutron and Photon Calculations , 1991 .

[53]  Lihong V. Wang,et al.  Biomedical Optics: Principles and Imaging , 2007 .

[54]  Pedro J. Coelho,et al.  Advances in the discrete ordinates and finite volume methods for the solution of radiative heat transfer problems in participating media , 2014 .

[55]  M. V. Rossum,et al.  Multiple scattering of classical waves: microscopy, mesoscopy, and diffusion , 1998, cond-mat/9804141.

[56]  Leonard R. Herrmann,et al.  Finite-Element Bending Analysis for Plates , 1967 .

[57]  Shawn D. Pautz,et al.  An Algorithm for Parallel Sn Sweeps on Unstructured Meshes , 2001 .

[58]  Axel Klar,et al.  Efficient numerical methods for radiation in gas turbines , 2004 .

[59]  Jerome Spanier,et al.  Efficient, automated Monte Carlo methods for radiation transport , 2008, J. Comput. Phys..

[60]  Frédéric Hecht,et al.  Specular reflection treatment for the 3D radiative transfer equation solved with the discrete ordinates method , 2017, J. Comput. Phys..

[61]  Jean Taine,et al.  RDFI determination of anisotropic and scattering dependent radiative conductivity tensors in porous media: Application to rod bundles , 2009 .

[62]  K. Evans The Spherical Harmonics Discrete Ordinate Method for Three-Dimensional Atmospheric Radiative Transfer , 1998 .

[63]  M. A. Badri,et al.  3D numerical modelling of the propagation of radiative intensity through a X-ray tomographied ligament , 2017 .