INTERACTIVE DATA EXPLORATION USING MDS MAPPING

Interactive exploratory data analysis can be realised by using dimensionality reduction techniques integrated in data visualization software. This work presents an adaptation of one multidimensional scaling algorithm to provide it with generalization capability, allowing the display of new data on an existing mapping. The ensuing relative mapping is used to help the understanding of classification results.

[1]  Wojciech Basalaj,et al.  Incremental multidimensional scaling method for database visualization , 1999, Electronic Imaging.

[2]  Richard C. T. Lee,et al.  A Triangulation Method for the Sequential Mapping of Points from N-Space to Two-Space , 1977, IEEE Transactions on Computers.

[3]  Wlodzislaw Duch,et al.  On global self-organizing maps , 1996, ESANN.

[4]  Richard C. T. Lee,et al.  A Heuristic Relaxation Method for Nonlinear Mapping in Cluster Analysis , 1973, IEEE Trans. Syst. Man Cybern..

[5]  Wlodzislaw Duch,et al.  Quantitative measures for self-organizing topographic maps , 1994 .

[6]  John W. Sammon,et al.  A Nonlinear Mapping for Data Structure Analysis , 1969, IEEE Transactions on Computers.

[7]  J. Kruskal Nonmetric multidimensional scaling: A numerical method , 1964 .

[8]  Anil K. Jain,et al.  A nonlinear projection method based on Kohonen's topology preserving maps , 1992, IEEE Trans. Neural Networks.

[9]  E. Clothiaux,et al.  Neural Networks and Their Applications , 1994 .

[10]  Michael E. Tipping Topographic mappings and feed-forward neural networks , 1996 .

[11]  Andreas Buja,et al.  XGobi: Interactive Dynamic Data Visualization in the X Window System , 1998 .

[12]  Wlodzislaw Duch,et al.  Optimization and Interpretation of Rule-based Classifiers , 2000, Intelligent Information Systems.

[13]  David J. Spiegelhalter,et al.  Machine Learning, Neural and Statistical Classification , 2009 .

[14]  Antoine Naud,et al.  Multidimensional scaling and kohonen?s self-organizing maps , 1996 .