Large-area microlens arrays fabricated on flexible polycarbonate sheets via single-step laser interference ablation

A single-step method for the fabrication of large-area microlens arrays on flexible polycarbonate sheets is described. On areas of approximately 1 cm2, 17 million to 120 million microlenses ranging in size from sub-micrometer to several micrometers are fabricated via deep-UV pulsed laser interference ablation. The uniformity and surface quality of fabricated microlens arrays are examined and confirmed through atomic force microscopy and scanning electron microscopy. Optical imaging performance of the microlenses, and their use in massively parallel, pulsed laser nanofabrication on silicon is demonstrated. The microlens arrays can be fabricated in a matter of seconds, suggesting the potential for fast and low-cost production on flexible plastic substrates.

[1]  Myeongkyu Lee,et al.  Fabrication of Au thin film gratings by pulsed laser interference , 2010 .

[2]  P. Nussbaum,et al.  Design, fabrication and testing of microlens arrays for sensors and microsystems , 1997 .

[3]  Jörg Krüger,et al.  Ultrashort pulse laser ablation of polycarbonate and polymethylmethacrylate , 2000 .

[4]  M. Hutley,et al.  The manufacture of microlenses by melting photoresist , 1990 .

[5]  Wenhao Huang,et al.  Micro lens fabrication by means of femtosecond two photon photopolymerization. , 2006, Optics express.

[6]  Bong-Kee Lee,et al.  Fabrication of polymer micro/nano-hybrid lens array by microstructured anodic aluminum oxide (AAO) mold , 2009 .

[7]  Michel A. Aegerter,et al.  Deposition of optical microlens arrays by ink-jet processes , 2001 .

[8]  Nam Quoc Ngo,et al.  Single-step fabrication of a microlens array in sol-gel material by direct laser writing and its application in optical coupling , 2004 .

[9]  Sung-Keun Lee,et al.  A simple method for microlens fabrication by the modified LIGA process , 2002 .

[10]  Senthil Theppakuttai,et al.  Marangoni effect in nanosphere-enhanced laser nanopatterning of silicon , 2003 .

[11]  G. Pati,et al.  Image metrology and system controls for scanning beam interference lithography , 2001 .

[12]  Andrés Fabián Lasagni,et al.  Direct laser interference patterning of poly(3,4-ethylene dioxythiophene)-poly(styrene sulfonate) (PEDOT-PSS) thin films , 2009 .

[13]  Stefan Sinzinger,et al.  Microoptics: SINZINGER:MICROOPTICS 2ED O-BK , 2005 .

[14]  Zheng Cui,et al.  Refractive micro lens array made of dichromate gelatin with gray-tone photolithography , 2001 .

[15]  M. Ares,et al.  Shack-Hartmann sensor based on a cylindrical microlens array. , 2007, Optics letters.

[16]  T. Suleski,et al.  Fabrication trends for free-space microoptics , 2005, Journal of Lightwave Technology.

[17]  T. Lippert Laser application of polymers , 2004 .

[18]  A. Kumar,et al.  Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning , 2006 .

[19]  R. Baets,et al.  Flexible fabrication of microlenses in polymer layers with excimer laser ablation , 2003 .

[20]  Mark L. Schattenburg,et al.  Sub-100 nm metrology using interferometrically produced fiducials , 1999 .

[21]  F. Weisbuch,et al.  Viscosity of transient melt layer on polymer surface under conditions of KrF laser ablation , 2002 .

[22]  A. Othonos Fiber Bragg gratings , 1999 .

[23]  G. Groos,et al.  Optical patterning of GaN films , 1996 .

[24]  Mordechai Rothschild,et al.  Resolution enhancement of 157 nm lithography by liquid immersion , 2002 .

[25]  Karl-Heinz Brenner,et al.  Microoptics : From Technology to Applications , 2004 .

[26]  A. Lasagni,et al.  Rapid fabrication of pentaerythritol triacrylate periodic structures on large areas by laser interference patterning with nanosecond pulses , 2009 .

[27]  Michael E. Walsh,et al.  On the design of lithographic interferometers and their application , 2004 .

[28]  Shaochen Chen,et al.  Direct write of microlens array using digital projection photopolymerization , 2008 .