Multiple Target Tracking Based on Sets of Trajectories

We propose a solution of the multiple target tracking (MTT) problem based on sets of trajectories and the random finite set framework. A full Bayesian approach to MTT should characterize the distribution of the trajectories given the measurements, as it contains all information about the trajectories. We attain this by considering multiobject density functions in which objects are trajectories. For the standard tracking models, we also describe a conjugate family of multitrajectory density functions.

[1]  S. Godsill,et al.  Monte Carlo filtering for multi target tracking and data association , 2005, IEEE Transactions on Aerospace and Electronic Systems.

[2]  Ángel F. García-Fernández,et al.  Poisson Multi-Bernoulli Mixture Trackers: Continuity Through Random Finite Sets of Trajectories , 2018, 2018 21st International Conference on Information Fusion (FUSION).

[3]  Ángel F. García-Fernández,et al.  Trajectory probability hypothesis density filter , 2018, 2018 21st International Conference on Information Fusion (FUSION).

[4]  Ángel F. García-Fernández,et al.  Poisson Multi-Bernoulli Mixture Filter: Direct Derivation and Implementation , 2017, IEEE Transactions on Aerospace and Electronic Systems.

[5]  Ángel F. García-Fernández,et al.  A Metric on the Space of Finite Sets of Trajectories for Evaluation of Multi-Target Tracking Algorithms , 2016, IEEE Transactions on Signal Processing.

[6]  Aihua Xia,et al.  A new metric between distributions of point processes , 2007, Advances in Applied Probability.

[7]  Peter Willett,et al.  Developing a Real-Time Track Display That Operators Do Not Hate , 2011, IEEE Transactions on Signal Processing.

[8]  Simo Srkk,et al.  Bayesian Filtering and Smoothing , 2013 .

[9]  Ángel F. García-Fernández,et al.  Generalized optimal sub-pattern assignment metric , 2016, 2017 20th International Conference on Information Fusion (Fusion).

[10]  Fredrik Lindsten,et al.  Backward Simulation Methods for Monte Carlo Statistical Inference , 2013, Found. Trends Mach. Learn..

[11]  Ángel F. García-Fernández,et al.  Bayesian Sequential Track Formation , 2014, IEEE Transactions on Signal Processing.

[12]  José Bento,et al.  A metric for sets of trajectories that is practical and mathematically consistent , 2016, ArXiv.

[13]  Peter Willett,et al.  Shooting two birds with two bullets: How to find Minimum Mean OSPA estimates , 2010, 2010 13th International Conference on Information Fusion.

[14]  A. Doucet,et al.  Sequential Monte Carlo methods for multitarget filtering with random finite sets , 2005, IEEE Transactions on Aerospace and Electronic Systems.

[15]  Petar M. Djuric,et al.  On the convergence of two sequential Monte Carlo methods for maximum a posteriori sequence estimation and stochastic global optimization , 2011, Statistics and Computing.

[16]  Christian P. Robert,et al.  The Bayesian choice , 1994 .

[17]  Yaakov Bar-Shalom,et al.  Sonar tracking of multiple targets using joint probabilistic data association , 1983 .

[18]  Felix Govaers,et al.  On Accumulated State Densities with applications to out-of-sequence measurement processing , 2009, 2009 12th International Conference on Information Fusion.

[19]  Ronald P. S. Mahler,et al.  Statistical Multisource-Multitarget Information Fusion , 2007 .

[20]  E. A. Bloem,et al.  Bayesian tracking of two possibly unresolved maneuvering targets , 2007, IEEE Transactions on Aerospace and Electronic Systems.

[21]  Ba-Ngu Vo,et al.  Labeled Random Finite Sets and the Bayes Multi-Target Tracking Filter , 2013, IEEE Transactions on Signal Processing.

[22]  Ba-Ngu Vo,et al.  Derivation of the PHD and CPHD Filters Based on Direct Kullback–Leibler Divergence Minimization , 2015, IEEE Transactions on Signal Processing.

[23]  Ba-Ngu Vo,et al.  Tracking an unknown time-varying number of speakers using TDOA measurements: a random finite set approach , 2006, IEEE Transactions on Signal Processing.

[24]  Ronald Mahler,et al.  CPHD and PHD filters for unknown backgrounds, part III: tractable multitarget filtering in dynamic clutter , 2010, Defense + Commercial Sensing.

[25]  Ángel F. García-Fernández,et al.  Two-Layer Particle Filter for Multiple Target Detection and Tracking , 2013, IEEE Transactions on Aerospace and Electronic Systems.

[26]  Hans Driessen,et al.  Tracking closely spaced targets: Bayes outperformed by an approximation? , 2008, 2008 11th International Conference on Information Fusion.

[27]  Ba-Ngu Vo,et al.  A Consistent Metric for Performance Evaluation of Multi-Object Filters , 2008, IEEE Transactions on Signal Processing.

[28]  Ba-Ngu Vo,et al.  Labeled Random Finite Sets and Multi-Object Conjugate Priors , 2013, IEEE Transactions on Signal Processing.

[29]  Ronald P. S. Mahler,et al.  Advances in Statistical Multisource-Multitarget Information Fusion , 2014 .

[30]  Daniel E. Clark,et al.  Multitarget Filtering With Linearized Complexity , 2018, IEEE Transactions on Signal Processing.

[31]  Simo Särkkä,et al.  Bayesian Filtering and Smoothing , 2013, Institute of Mathematical Statistics textbooks.

[32]  Jason L. Williams,et al.  Marginal multi-bernoulli filters: RFS derivation of MHT, JIPDA, and association-based member , 2012, IEEE Transactions on Aerospace and Electronic Systems.

[33]  Samuel S. Blackman,et al.  Design and Analysis of Modern Tracking Systems , 1999 .

[34]  S.S. Blackman,et al.  Multiple hypothesis tracking for multiple target tracking , 2004, IEEE Aerospace and Electronic Systems Magazine.

[35]  Wolfram Burgard,et al.  Tracking multiple moving targets with a mobile robot using particle filters and statistical data association , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[36]  Ángel F. García-Fernández Track-before-detect labeled multi-bernoulli particle filter with label switching , 2016, IEEE Transactions on Aerospace and Electronic Systems.

[37]  R. Mahler Multitarget Bayes filtering via first-order multitarget moments , 2003 .

[38]  Lennart Svensson,et al.  Labeling uncertainty in multitarget tracking , 2016, IEEE Transactions on Aerospace and Electronic Systems.

[39]  Henk A. P. Blom,et al.  Permutation invariance in Bayesian estimation of two targets that maneuver in and out formation flight , 2009, 2009 12th International Conference on Information Fusion.

[40]  Lennart Svensson,et al.  A Bayesian look at the optimal track labelling problem , 2012 .

[41]  K. G. Murty An Algorithm for Ranking All the Assignment in Order of Increasing Cost , 1968 .

[42]  Robin J. Evans,et al.  A Particle Marginal Metropolis-Hastings Multi-Target Tracker , 2014, IEEE Transactions on Signal Processing.

[43]  Ángel F. García-Fernández,et al.  Multitarget tracking using the Joint Multitrack Probability Density , 2009, 2009 12th International Conference on Information Fusion.

[44]  Josiane Zerubia,et al.  Joint Detection and Tracking of Moving Objects Using Spatio-temporal Marked Point Processes , 2015, 2015 IEEE Winter Conference on Applications of Computer Vision.

[45]  Mark R. Morelande,et al.  Target tracking based on estimation of sets of trajectories , 2014, 17th International Conference on Information Fusion (FUSION).

[46]  A. Doucet,et al.  Monte Carlo Smoothing for Nonlinear Time Series , 2004, Journal of the American Statistical Association.

[47]  S. Mori,et al.  Tracking and classifying multiple targets without a priori identification , 1986 .

[48]  Emilio Maggio,et al.  Efficient Multitarget Visual Tracking Using Random Finite Sets , 2008, IEEE Transactions on Circuits and Systems for Video Technology.

[49]  Jeffrey D. Scargle,et al.  An Introduction to the Theory of Point Processes, Vol. I: Elementary Theory and Methods , 2004, Technometrics.