Nonlinear optical beam propagation for optical limiting.

We implement numerical modeling of high-energy laser-pulse propagation through bulk nonlinear optical materials using focused beams. An executable program with a graphical user interface is made available to researchers for modeling the propagation of beams through materials much thicker than the diffraction length (up to 10(3) times longer). Ultrafast nonlinearities of the bound-electronic Kerr effect and two-photon absorption as well as time-dependent excited-state and thermal nonlinearities are taken into account. The hydrodynamic equations describing the rarefaction of the medium that is due to heating are solved to determine thermal index changes for nanosecond laser pulses. We also show how this effect can be simplified in some cases by an approximation that assumes instantaneous expansion (so-called thermal lensing approximation). Comparisons of numerical results with several Z-scan, optical limiting and beam distortion experiments are presented. Possible application to optimization of a passive optical limiter design is discussed.

[1]  J. R. Morris,et al.  Time-dependent propagation of high energy laser beams through the atmosphere , 1976 .

[2]  S. Gayen,et al.  Optical nonlinearities of tea studied by Z-scan and four-wave mixing techniques , 1994 .

[3]  J. P. Gordon,et al.  Long‐Transient Effects in Lasers with Inserted Liquid Samples , 1965 .

[4]  Steven R. J. Brueck,et al.  Photo-acoustic and photo-refractive detection of small absorptions in liquids , 1980 .

[5]  Jean-Marc Heritier,et al.  Electrostrictive limit and focusing effects in pulsed photoacoustic detection , 1983 .

[6]  Reinhard Maerz,et al.  Results of benchmark tests for different numerical BPM algorithms , 1994, Integrated Optoelectronics.

[7]  R. Cabanel,et al.  Thermal nonlinear refraction in dye solutions: a study of the transient regime , 1997 .

[8]  C. M. Lawson,et al.  Nonlinear transmission and reflection at a dielectric-carbon microparticle suspension interface. , 1992, Optics Letters.

[9]  E. W. Stryland,et al.  High-sensitivity, single-beam n(2) measurements. , 1989, Optics letters.

[10]  David J. Hagan,et al.  Software for computer modeling of laser-pulse propagation through an optical system with nonlinear optical elements , 1998, Optics + Photonics.

[11]  D. P. Krindach,et al.  Thermal self-actions of laser beams , 1968 .

[12]  William H. Southwell,et al.  Validity of the Fresnel approximation in the near field , 1981 .

[13]  Grover A. Swartzlander,et al.  Implementation of a package for optical limiter modeling , 1997, Optics & Photonics.

[14]  David J. Hagan,et al.  Liquid-based multicell optical limiter , 1996, Optics & Photonics.

[15]  Paul A. Fleitz,et al.  Nonlinear Optics of Organic Molecules and Polymers , 1997 .

[16]  G Liu Theory of the photoacoustic effect in condensed matter. , 1982, Applied optics.

[17]  C. Patel,et al.  Pulsed optoacoustic spectroscopy of condensed matter , 1981 .

[18]  D. Kliger,et al.  Multiphoton absorption spectra using thermal blooming: I. Theory , 1977 .

[19]  A. Campillo,et al.  Thermal-defocusing/scattering optical limiter. , 1994, Optics letters.

[20]  D. J. Hagan,et al.  Kramers-Krönig relations in nonlinear optics , 1992 .

[21]  G. R. Hadley,et al.  Wide-angle beam propagation using Pade approximant operators. , 1992, Optics letters.

[22]  David J. Hagan,et al.  Direct measurements of nonlinear absorption and refraction in solutions of phthalocyanines , 1992 .

[23]  John N. Hayes,et al.  Thermal blooming of laser beams in fluids. , 1972, Applied optics.

[24]  William H. Press,et al.  Numerical recipes , 1990 .

[25]  W. Schröer,et al.  Studies on the diffraction image of a thermal lens. , 1995, Applied optics.

[26]  E. A. Sziklas,et al.  Mode calculations in unstable resonators with flowing saturable gain. 2: Fast Fourier transform method. , 1975, Applied optics.

[27]  David J. Hagan,et al.  Nonlinear light absorption of polymethine dyes in liquid and solid media , 1998 .

[28]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[29]  David J. Hagan,et al.  HIGH DYNAMIC RANGE PASSIVE OPTICAL LIMITERS , 1993 .

[30]  Kamjou Mansour,et al.  Nonlinear optical properties of carbon-black suspensions (ink) , 1992 .

[31]  Chun-ping Zhang,et al.  Position dispersion and optical limiting resulting from thermally induced nonlinearities in Chinese tea liquid. , 1993, Applied optics.

[32]  M. Feit,et al.  Simple spectral method for solving propagation problems in cylindrical geometry with fast Fourier transforms. , 1989, Optics Letters.

[33]  P. Miles,et al.  Bottleneck optical limiters: the optimal use of excited-state absorbers. , 1994, Applied optics.

[34]  T. F. Boggess,et al.  A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials , 1993 .

[35]  L. Knight,et al.  Laser-induced thermal lens effect: a new theoretical model. , 1982, Applied optics.

[36]  Brian S. Wherrett,et al.  Fast Fourier transform techniques for efficient simulation of Z-scan measurements , 1995 .

[37]  Norman J. Dovichi,et al.  Fresnel diffraction theory for steady‐state thermal lens measurements in thin films , 1990 .

[38]  G. D. Costa,et al.  Geometrical interpretation of a laser-induced thermal lens , 1993 .

[39]  V. Kozich,et al.  Thermal lensing resulting from one- and two-photon absorption studied with a two-color time-resolved Z scan. , 1994, Optics letters.

[40]  S. Hendow,et al.  Recursive numerical solution for nonlinear wave propagation in fibers and cylindrically symmetric systems. , 1986, Applied optics.

[41]  C A Carter,et al.  Comparison of models describing the thermal lens effect. , 1984, Applied optics.

[42]  E. W. Stryland,et al.  Sensitive Measurement of Optical Nonlinearities Using a Single Beam Special 30th Anniversary Feature , 1990 .

[43]  M. Litvak,et al.  Perturbation of the Refractive Index of Absorbing Media by a Pulsed Laser Beam , 1969 .

[44]  A A Said,et al.  Optimization of optical limiting devices based on excited-state absorption. , 1997, Applied optics.

[45]  Z. Kafafi,et al.  Excited-state absorption-enhanced thermal optical limiting in C(60). , 1993, Optics letters.