On well-separated sets and fast mutipole methods

The notion of well-separated sets is crucial in fast multipole methods as the main idea is to approximate the interaction between such sets via cluster expansions. We revisit the one-parameter multipole acceptance criterion in a general setting and derive a relative error estimate. This analysis benefits asymmetric versions of the method, where the division of the multipole boxes is more liberal than in conventional codes. Such variants offer a particularly elegant implementation with a balanced multipole tree, a feature which might be very favorable on modern computer architectures.

[1]  Guy E. Blelloch,et al.  A practical comparison of N-body algorithms , 1994, Parallel Algorithms.

[2]  Henrik Gordon Petersen,et al.  Error estimates for the fast multipole method. I. The two-dimensional case , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[3]  Srinivas Aluru,et al.  Parallel accelerated cartesian expansions for particle dynamics simulations , 2009, 2009 IEEE International Symposium on Parallel & Distributed Processing.

[4]  Robert Sedgewick,et al.  Algorithms in C , 1990 .

[5]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[6]  Henrik G. Petersen,et al.  Error estimates for the fast multipole method. II. The three-dimensional case , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[7]  R. Duraiswami,et al.  Fast Multipole Methods for the Helmholtz Equation in Three Dimensions , 2005 .

[8]  Hari Sundar,et al.  Bottom-Up Construction and 2: 1 Balance Refinement of Linear Octrees in Parallel , 2008, SIAM J. Sci. Comput..

[9]  Ramani Duraiswami,et al.  Fast multipole methods on graphics processors , 2008, J. Comput. Phys..

[10]  He Huang,et al.  Accelerated Cartesian expansions - A fast method for computing of potentials of the form R-ν for all real ν , 2007, J. Comput. Phys..

[11]  Henrik G. Petersen,et al.  Error estimates for the fast multipole method , 1997 .

[12]  Olivier Coulaud,et al.  High performance BLAS formulation of the adaptive Fast Multipole Method , 2010, Math. Comput. Model..

[13]  Jianming Zhang,et al.  Adaptive spatial decomposition in fast multipole method , 2007, J. Comput. Phys..

[14]  Hans Bernhoff,et al.  Analytical solutions for a single blade in vertical axis turbine motion in two dimensions , 2009 .

[15]  Michael S. Warren,et al.  Skeletons from the treecode closet , 1994 .

[16]  L. Greengard,et al.  A Fast Adaptive Multipole Algorithm for Particle Simulations , 1988 .

[17]  Michael Griebel,et al.  Numerical Simulation in Molecular Dynamics: Numerics, Algorithms, Parallelization, Applications , 2007 .

[18]  Michael S. Warren,et al.  A portable parallel particle program , 1995 .

[19]  L. Greengard,et al.  Regular Article: A Fast Adaptive Multipole Algorithm in Three Dimensions , 1999 .

[20]  Srinivas Aluru Greengard's N-Body Algorithm is not Order N , 1996, SIAM J. Sci. Comput..