Estimating the Granularity Coefficient of a Potts-Markov Random Field Within a Markov Chain Monte Carlo Algorithm

This paper addresses the problem of estimating the Potts parameter β jointly with the unknown parameters of a Bayesian model within a Markov chain Monte Carlo (MCMC) algorithm. Standard MCMC methods cannot be applied to this problem because performing inference on β requires computing the intractable normalizing constant of the Potts model. In the proposed MCMC method, the estimation of β is conducted using a likelihood-free Metropolis-Hastings algorithm. Experimental results obtained for synthetic data show that estimating β jointly with the other unknown parameters leads to estimation results that are as good as those obtained with the actual value of β. On the other hand, choosing an incorrect value of β can degrade estimation performance significantly. To illustrate the interest of this method, the proposed algorithm is successfully applied to real bidimensional SAR and tridimensional ultrasound images.

[1]  Josiane Zerubia,et al.  Modeling SAR images with a generalization of the Rayleigh distribution , 2004, IEEE Transactions on Image Processing.

[2]  Bülent Sankur,et al.  Adaptive Langevin Sampler for Separation of $t$-Distribution Modelled Astrophysical Maps , 2010, IEEE Transactions on Image Processing.

[3]  S. Sisson,et al.  Reversible jump Markov chain Monte Carlo , 2010, 1001.2055.

[4]  Masato Inoue,et al.  Posterior-Mean Super-Resolution With a Causal Gaussian Markov Random Field Prior , 2011, IEEE Transactions on Image Processing.

[5]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[6]  Gilles Celeux,et al.  EM procedures using mean field-like approximations for Markov model-based image segmentation , 2003, Pattern Recognit..

[7]  Faming Liang,et al.  A double Metropolis–Hastings sampler for spatial models with intractable normalizing constants , 2010 .

[8]  ForbesFlorence,et al.  Hidden Markov Random Field Model Selection Criteria Based on Mean Field-Like Approximations , 2003 .

[9]  Anthony N. Pettitt,et al.  Variational Bayes for estimating the parameters of a hidden Potts model , 2009, Stat. Comput..

[10]  Josiane Zerubia,et al.  SAR image filtering based on the heavy-tailed Rayleigh model , 2006, IEEE Transactions on Image Processing.

[11]  Bülent Sankur,et al.  Bayesian Separation of Images Modeled With MRFs Using MCMC , 2009, IEEE Transactions on Image Processing.

[12]  Hong Sun,et al.  Supervised SAR Image MPM Segmentation Based on Region-Based Hierarchical Model , 2006, IEEE Geoscience and Remote Sensing Letters.

[13]  P. Green,et al.  Corrigendum: On Bayesian analysis of mixtures with an unknown number of components , 1997 .

[14]  K. Moffett,et al.  Remote Sens , 2015 .

[15]  Laurent Risser,et al.  Min-max Extrapolation Scheme for Fast Estimation of 3D Potts Field Partition Functions. Application to the Joint Detection-Estimation of Brain Activity in fMRI , 2011, J. Signal Process. Syst..

[16]  Jean-Yves Tourneret,et al.  Bayesian off-line detection of multiple change-points corrupted by multiplicative noise: application to SAR image edge detection , 2003, Signal Process..

[17]  Hadj Batatia,et al.  Modeling ultrasound echoes in skin tissues using symmetric α-stable processes , 2012, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[18]  Richard G. Everitt,et al.  Bayesian Parameter Estimation for Latent Markov Random Fields and Social Networks , 2012, ArXiv.

[19]  Hoon Kim,et al.  Monte Carlo Statistical Methods , 2000, Technometrics.

[20]  Laurent Risser,et al.  Fast bilinear extrapolation of 3D ising field partition function. application to fMRI image analysis. , 2009, 2009 16th IEEE International Conference on Image Processing (ICIP).

[21]  Jean-Michel Marin,et al.  Approximate Bayesian computational methods , 2011, Statistics and Computing.

[22]  Yu Li,et al.  Segmentation of SAR Intensity Imagery With a Voronoi Tessellation, Bayesian Inference, and Reversible Jump MCMC Algorithm , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[23]  Anthony N. Pettitt,et al.  Efficient recursions for general factorisable models , 2004 .

[24]  David Bruce Wilson,et al.  Exact sampling with coupled Markov chains and applications to statistical mechanics , 1996, Random Struct. Algorithms.

[25]  Arthur Gretton,et al.  Parallel Gibbs Sampling: From Colored Fields to Thin Junction Trees , 2011, AISTATS.

[26]  A. Doucet,et al.  Particle Markov chain Monte Carlo methods , 2010 .

[27]  J. Besag Statistical Analysis of Non-Lattice Data , 1975 .

[28]  Jean-Yves Tourneret,et al.  Segmentation of Skin Lesions in 2-D and 3-D Ultrasound Images Using a Spatially Coherent Generalized Rayleigh Mixture Model , 2012, IEEE Transactions on Medical Imaging.

[29]  C. Robert,et al.  ABC likelihood-free methods for model choice in Gibbs random fields , 2008, 0807.2767.

[30]  J. Laurie Snell,et al.  Markov Random Fields and Their Applications , 1980 .

[31]  Robert Azencott,et al.  Rigid-Motion-Invariant Classification of 3-D Textures , 2012, IEEE Transactions on Image Processing.

[32]  A. Childs,et al.  Exact sampling from nonattractive distributions using summary states. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  J. Møller,et al.  An efficient Markov chain Monte Carlo method for distributions with intractable normalising constants , 2006 .

[34]  Claus Skaanning,et al.  Markov Chain Monte Carlo Methods , 2006 .

[35]  Xavier Descombes,et al.  Spatio-temporal fMRI analysis using Markov random fields , 1998, IEEE Transactions on Medical Imaging.

[36]  Paul Marjoram,et al.  Markov chain Monte Carlo without likelihoods , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[37]  C. Geyer,et al.  Constrained Monte Carlo Maximum Likelihood for Dependent Data , 1992 .

[38]  Laurent Risser,et al.  Spatially adaptive mixture modeling for analysis of fMRI time series , 2009, NeuroImage.

[39]  Simon J. Godsill,et al.  Statistical reconstruction and analysis of autoregressive signals in impulsive noise using the Gibbs sampler , 1998, IEEE Trans. Speech Audio Process..

[40]  Henri Maître,et al.  A new statistical model for Markovian classification of urban areas in high-resolution SAR images , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[41]  P. Moral,et al.  Sequential Monte Carlo samplers , 2002, cond-mat/0212648.

[42]  Jean-Yves Tourneret,et al.  Bayesian Orthogonal Component Analysis for Sparse Representation , 2009, IEEE Transactions on Signal Processing.

[43]  Xiao-Li Meng,et al.  Simulating Normalizing Constants: From Importance Sampling to Bridge Sampling to Path Sampling , 1998 .

[44]  Edgar Arce Santana,et al.  Hidden Markov Measure Field Models for Image Segmentation , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[45]  Mark W. Woolrich,et al.  Mixture models with adaptive spatial regularization for segmentation with an application to FMRI data , 2005, IEEE Transactions on Medical Imaging.

[46]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[47]  Jiwen Lu,et al.  Abrupt Motion Tracking Via Intensively Adaptive Markov-Chain Monte Carlo Sampling , 2012, IEEE Transactions on Image Processing.

[48]  Ali Mohammad-Djafari,et al.  Bayesian Approach With Hidden Markov Modeling and Mean Field Approximation for Hyperspectral Data Analysis , 2008, IEEE Transactions on Image Processing.

[49]  Max Mignotte,et al.  Fusion of Hidden Markov Random Field Models and Its Bayesian Estimation , 2006, IEEE Transactions on Image Processing.

[50]  Gersende Fort,et al.  Combining Monte Carlo and Mean-Field-Like Methods for Inference in Hidden Markov Random Fields , 2007, IEEE Transactions on Image Processing.

[51]  Lei Wang,et al.  MRF parameter estimation by MCMC method , 2000, Pattern Recognit..

[52]  Stan Z. Li,et al.  Markov Random Field Modeling in Image Analysis , 2001, Computer Science Workbench.

[53]  Hichem Snoussi,et al.  Fast joint separation and segmentation of mixed images , 2004, J. Electronic Imaging.

[54]  Yihua Yu,et al.  MRF parameter estimation by an accelerated method , 2003, Pattern Recognit. Lett..

[55]  Ali Mohammad-Djafari,et al.  Joint NDT Image Restoration and Segmentation Using Gauss–Markov–Potts Prior Models and Variational Bayesian Computation , 2009, IEEE Transactions on Image Processing.

[56]  Jean-Yves Tourneret,et al.  Enhancing Hyperspectral Image Unmixing With Spatial Correlations , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[57]  Zoubin Ghahramani,et al.  Bayesian Learning in Undirected Graphical Models: Approximate MCMC Algorithms , 2004, UAI.

[58]  P. Green,et al.  On Bayesian Analysis of Mixtures with an Unknown Number of Components (with discussion) , 1997 .

[59]  A. Cook,et al.  Inference in Epidemic Models without Likelihoods , 2009 .

[60]  D. Balding,et al.  Approximate Bayesian computation in population genetics. , 2002, Genetics.

[61]  Dwarikanath Mahapatra,et al.  Integrating Segmentation Information for Improved MRF-Based Elastic Image Registration , 2012, IEEE Transactions on Image Processing.

[62]  Sylvia Richardson,et al.  Markov chain concepts related to sampling algorithms , 1995 .

[63]  M. Feldman,et al.  Population growth of human Y chromosomes: a study of Y chromosome microsatellites. , 1999, Molecular biology and evolution.

[64]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[65]  Carlos Alberola-López,et al.  A Markov Random Field Approach for Topology-Preserving Registration: Application to Object-Based Tomographic Image Interpolation , 2012, IEEE Transactions on Image Processing.

[66]  Nikolas P. Galatsanos,et al.  A Bayesian Framework for Image Segmentation With Spatially Varying Mixtures , 2010, IEEE Transactions on Image Processing.

[67]  José M. Bioucas-Dias,et al.  Oil spill segmentation of SAR images via graph cuts , 2006, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[68]  Josiane Zerubia,et al.  Estimation of Markov random field prior parameters using Markov chain Monte Carlo maximum likelihood , 1999, IEEE Trans. Image Process..

[69]  Edward H. Ip,et al.  Stochastic EM: method and application , 1996 .

[70]  Hong Sun,et al.  An unsupervised segmentation method based on MPM for SAR images , 2005, IEEE Geoscience and Remote Sensing Letters.

[71]  Jean-Michel Marin,et al.  Bayesian Core: A Practical Approach to Computational Bayesian Statistics , 2010 .

[72]  Gabriela Palacio,et al.  Unsupervised Classification of SAR Images Using Markov Random Fields and ${\cal G}_{I}^{0}$ Model , 2011, IEEE Geoscience and Remote Sensing Letters.

[73]  Zoubin Ghahramani,et al.  MCMC for Doubly-intractable Distributions , 2006, UAI.

[74]  Alfred O. Hero,et al.  Hierarchical Bayesian Sparse Image Reconstruction With Application to MRFM , 2008, IEEE Transactions on Image Processing.

[75]  Joachim M. Buhmann,et al.  Nonparametric Bayesian Image Segmentation , 2008, International Journal of Computer Vision.

[76]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[77]  Max Mignotte,et al.  Image Denoising by Averaging of Piecewise Constant Simulations of Image Partitions , 2007, IEEE Transactions on Image Processing.

[78]  F. Y. Wu The Potts model , 1982 .

[79]  David A. Clausi,et al.  Unsupervised segmentation of synthetic aperture Radar sea ice imagery using a novel Markov random field model , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[80]  Max Mignotte,et al.  A Label Field Fusion Bayesian Model and Its Penalized Maximum Rand Estimator for Image Segmentation , 2010, IEEE Transactions on Image Processing.

[81]  Vincent Loriette,et al.  Bayesian Estimation for Optimized Structured Illumination Microscopy , 2012, IEEE Transactions on Image Processing.

[82]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.