Path integration and the neural basis of the 'cognitive map'

The hippocampal formation can encode relative spatial location, without reference to external cues, by the integration of linear and angular self-motion (path integration). Theoretical studies, in conjunction with recent empirical discoveries, suggest that the medial entorhinal cortex (MEC) might perform some of the essential underlying computations by means of a unique, periodic synaptic matrix that could be self-organized in early development through a simple, symmetry-breaking operation. The scale at which space is represented increases systematically along the dorsoventral axis in both the hippocampus and the MEC, apparently because of systematic variation in the gain of a movement-speed signal. Convergence of spatially periodic input at multiple scales, from so-called grid cells in the entorhinal cortex, might result in non-periodic spatial firing patterns (place fields) in the hippocampus.

[1]  P. Balsam,et al.  Context and Learning , 1985 .

[2]  W E Skaggs,et al.  Interactions between location and task affect the spatial and directional firing of hippocampal neurons , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[3]  C. H. Vanderwolf,et al.  Hippocampal EEG and behavior: changes in amplitude and frequency of RSA (theta rhythm) associated with spontaneous and learned movement patterns in rats and cats. , 1973, Behavioral biology.

[4]  B. McNaughton,et al.  Replay of Neuronal Firing Sequences in Rat Hippocampus During Sleep Following Spatial Experience , 1996, Science.

[5]  B L McNaughton,et al.  Path Integration and Cognitive Mapping in a Continuous Attractor Neural Network Model , 1997, The Journal of Neuroscience.

[6]  B. McNaughton,et al.  Self‐motion and the origin of differential spatial scaling along the septo‐temporal axis of the hippocampus , 2005, Hippocampus.

[7]  M. Witter,et al.  Morphological and numerical analysis of synaptic interactions between neurons in deep and superficial layers of the entorhinal cortex of the rat , 2003, Hippocampus.

[8]  tAlejandro Peinado,et al.  t Traveling Slow Waves of Neural Activity: A Novel Form of Network Activity in Developing Neocortex , 2000, The Journal of Neuroscience.

[9]  D S Touretzky,et al.  Theory of rodent navigation based on interacting representations of space , 1996, Hippocampus.

[10]  R U Muller,et al.  Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[11]  C. Shatz,et al.  Synaptic Activity and the Construction of Cortical Circuits , 1996, Science.

[12]  T. Hafting,et al.  Microstructure of a spatial map in the entorhinal cortex , 2005, Nature.

[13]  O. Garaschuk,et al.  Large-scale oscillatory calcium waves in the immature cortex , 2000, Nature Neuroscience.

[14]  N. Swindale A model for the formation of ocular dominance stripes , 1980, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[15]  T. Teyler,et al.  The hippocampal memory indexing theory. , 1986, Behavioral neuroscience.

[16]  R. Yuste,et al.  Neuronal domains in developing neocortex: Mechanisms of coactivation , 1995, Neuron.

[17]  B. Hars,et al.  In memory of consolidation. , 2006, Learning & memory.

[18]  H. Eichenbaum,et al.  The Hippocampus, Memory, and Place Cells Is It Spatial Memory or a Memory Space? , 1999, Neuron.

[19]  J. O’Keefe Place units in the hippocampus of the freely moving rat , 1976, Experimental Neurology.

[20]  S. Amari Dynamics of pattern formation in lateral-inhibition type neural fields , 1977, Biological Cybernetics.

[21]  David K. Bilkey,et al.  THE PARAHIPPOCAMPAL REGION: ORGANIZATION AND ROLE IN COGNITIVE FUNCTION , 2004 .

[22]  A. Sahgal Neurobiology of the Hippocampus, W. Seifert (Ed.). Academic Press (1983), xxviii + 632, ISBN: 0 126 34880 4 , 1984 .

[23]  M. Witter,et al.  Functional organization of the extrinsic and intrinsic circuitry of the parahippocampal region , 1989, Progress in Neurobiology.

[24]  R. Muller,et al.  The effects of changes in the environment on the spatial firing of hippocampal complex-spike cells , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[25]  B. Yegnanarayana,et al.  Artificial Neural Networks , 2004 .

[26]  G. Karmos,et al.  Electrical activity of the archicortex , 1986 .

[27]  K. Zhang,et al.  Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: a theory , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[28]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.

[29]  James L. McClelland,et al.  Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. , 1995, Psychological review.

[30]  RU Muller,et al.  The hippocampus as a cognitive graph , 1996, The Journal of general physiology.

[31]  A. Treves,et al.  Why the simplest notion of neocortex as an autoassociative memory would not work , 1992 .

[32]  J. Guzowski,et al.  Differences in Hippocampal Neuronal Population Responses to Modifications of an Environmental Context: Evidence for Distinct, Yet Complementary, Functions of CA3 and CA1 Ensembles , 2004, The Journal of Neuroscience.

[33]  C. C. Law,et al.  Formation of receptive fields in realistic visual environments according to the Bienenstock, Cooper, and Munro (BCM) theory. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Mark R. Bower,et al.  Sequential-Context-Dependent Hippocampal Activity Is Not Necessary to Learn Sequences with Repeated Elements , 2005, The Journal of Neuroscience.

[35]  C. H. Vanderwolf,et al.  Hippocampal electrical activity and voluntary movement in the rat. , 1969, Electroencephalography and clinical neurophysiology.

[36]  T. Dugladze,et al.  Properties of entorhinal cortex deep layer neurons projecting to the rat dentate gyrus , 2001, The European journal of neuroscience.

[37]  C. A. Castro,et al.  Spatial selectivity of rat hippocampal neurons: dependence on preparedness for movement. , 1989, Science.

[38]  E. Dulos,et al.  Diffusive Instabilities and Chemical reactions , 2002, Int. J. Bifurc. Chaos.

[39]  J S Taube,et al.  Preferential use of the landmark navigational system by head direction cells in rats. , 1995, Behavioral neuroscience.

[40]  David S. Touretzky,et al.  The Role of the Hippocampus in Solving the Morris Water Maze , 1998, Neural Computation.

[41]  B. McNaughton,et al.  Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences , 1996, Hippocampus.

[42]  Patricia E. Sharp,et al.  Subicular cells generate similar spatial firing patterns in two geometrically and visually distinctive environments: Comparison with hippocampal place cells , 1997, Behavioural Brain Research.

[43]  K. Paller,et al.  Consolidating dispersed neocortical memories: the missing link in amnesia. , 1997, Memory.

[44]  D. Amaral,et al.  Entorhinal cortex of the rat: Organization of intrinsic connections , 1998, The Journal of comparative neurology.

[45]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[46]  D. Marr A theory of cerebellar cortex , 1969, The Journal of physiology.

[47]  Stephen L. Cowen,et al.  Organization of hippocampal cell assemblies based on theta phase precession , 2006, Hippocampus.

[48]  K. Mori,et al.  A columnar arrangement of dendritic processes of entorhinal cortex neurons revealed by a monoclonal antibody , 1989, Brain Research.

[49]  B. McNaughton,et al.  Independent Codes for Spatial and Episodic Memory in Hippocampal Neuronal Ensembles , 2005, Science.

[50]  F. H. Lopes da Silva,et al.  Electrophysiological characterization of interlaminar entorhinal connections: an essential link for re‐entrance in the hippocampal–entorhinal system , 2003, The European journal of neuroscience.

[51]  B. McNaughton,et al.  Cortical-hippocampal interactions and cognitive mapping: A hypothesis based on reintegration of the parietal and inferotemporal pathways for visual processing , 1989 .

[52]  W E Skaggs,et al.  The Effect of Aging on Experience-Dependent Plasticity of Hippocampal Place Cells , 1997, The Journal of Neuroscience.

[53]  A. Treves,et al.  Distinct Ensemble Codes in Hippocampal Areas CA3 and CA1 , 2004, Science.

[54]  B. McNaughton,et al.  Comparison of spatial firing characteristics of units in dorsal and ventral hippocampus of the rat , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[55]  A. M. Turing,et al.  The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[56]  B. McNaughton,et al.  Self-Motion and the Hippocampal Spatial Metric , 2005, The Journal of Neuroscience.

[57]  M Tsodyks,et al.  Attractor neural network models of spatial maps in hippocampus , 1999, Hippocampus.

[58]  L. Cooper,et al.  A physiological basis for a theory of synapse modification. , 1987, Science.

[59]  B. McNaughton,et al.  Experience-dependent, asymmetric expansion of hippocampal place fields. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[60]  F. H. Lopes da Silva,et al.  Evidence for a direct projection from the postrhinal cortex to the subiculum in the rat , 2001, Hippocampus.

[61]  E. Capaldi,et al.  The organization of behavior. , 1992, Journal of applied behavior analysis.

[62]  Dulos,et al.  Experimental evidence of a sustained standing Turing-type nonequilibrium chemical pattern. , 1990, Physical review letters.

[63]  B. McNaughton,et al.  Dead Reckoning, Landmark Learning, and the Sense of Direction: A Neurophysiological and Computational Hypothesis , 1991, Journal of Cognitive Neuroscience.

[64]  J. O’Keefe,et al.  Hippocampal place units in the freely moving rat: Why they fire where they fire , 1978, Experimental Brain Research.

[65]  E. Bienenstock,et al.  Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[66]  W E Skaggs,et al.  Deciphering the hippocampal polyglot: the hippocampus as a path integration system. , 1996, The Journal of experimental biology.

[67]  E. Buhl,et al.  Ultrastructure and aspects of functional organization of pyramidal and nonpyramidal entorhinal projection neurons contributing to the perforant path , 1991, The Journal of comparative neurology.

[68]  Erik Mosekilde,et al.  Computer simulation of Turing structures in the chlorite-iodide-malonic acid system , 1996 .

[69]  Pierre Maquet,et al.  Sleep and brain plasticity , 2003 .

[70]  R. G. Morris D.O. Hebb: The Organization of Behavior, Wiley: New York; 1949 , 1999, Brain Research Bulletin.

[71]  W. Seifert Neurobiology of the hippocampus , 1983 .

[72]  D. Amaral,et al.  Entorhinal cortex of the rat: Topographic organization of the cells of origin of the perforant path projection to the dentate gyrus , 1998, The Journal of comparative neurology.

[73]  G Buzsáki,et al.  Sustained activation of hippocampal pyramidal cells by ‘space clamping’ in a running wheel , 1999, The European journal of neuroscience.

[74]  G. Paxinos The Rat nervous system , 1985 .

[75]  J. Albus A Theory of Cerebellar Function , 1971 .

[76]  B L McNaughton,et al.  Dynamics of the hippocampal ensemble code for space. , 1993, Science.

[77]  C Kentros,et al.  Abolition of long-term stability of new hippocampal place cell maps by NMDA receptor blockade. , 1998, Science.

[78]  P E Sharp,et al.  Complimentary roles for hippocampal versus subicular/entorhinal place cells in coding place, context, and events , 1999, Hippocampus.

[79]  J. S. Barlow Inertial navigation as a basis for animal navigation. , 1964, Journal of theoretical biology.

[80]  A Berthoz,et al.  A neural network model of sensoritopic maps with predictive short-term memory properties. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[81]  R. Yuste,et al.  Involvement of Cajal-Retzius Neurons in Spontaneous Correlated Activity of Embryonic and Postnatal Layer 1 from Wild-Type and Reeler Mice , 1999, The Journal of Neuroscience.

[82]  Mark C. Fuhs,et al.  Influence of path integration versus environmental orientation on place cell remapping between visually identical environments. , 2005, Journal of neurophysiology.

[83]  May-Britt Moser,et al.  Place cells, spatial maps and the population code for memory , 2005, Current Opinion in Neurobiology.

[84]  E. Save,et al.  Evidence for entorhinal and parietal cortices involvement in path integration in the rat , 2004, Experimental Brain Research.

[85]  D. O'Leary,et al.  Retinotopic Map Refinement Requires Spontaneous Retinal Waves during a Brief Critical Period of Development , 2003, Neuron.

[86]  K M Gothard,et al.  Dynamics of Mismatch Correction in the Hippocampal Ensemble Code for Space: Interaction between Path Integration and Environmental Cues , 1996, The Journal of Neuroscience.

[87]  D. Amaral,et al.  Morphological and electrophysiological characteristics of layer V neurons of the rat lateral entorhinal cortex , 2000, The Journal of comparative neurology.

[88]  Arne D. Ekstrom,et al.  NMDA Receptor Antagonism Blocks Experience-Dependent Expansion of Hippocampal “Place Fields” , 2001, Neuron.

[89]  M. Feller,et al.  Spontaneous Correlated Activity in Developing Neural Circuits , 1999, Neuron.

[90]  Horst Mittelstaedt,et al.  Homing by Path Integration , 1982 .

[91]  A. Alonso,et al.  Morphological characteristics of layer II projection neurons in the rat medial entorhinal cortex , 1997, Hippocampus.

[92]  J. O'Keefe,et al.  The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. , 1971, Brain research.

[93]  J. Knierim,et al.  Major Dissociation Between Medial and Lateral Entorhinal Input to Dorsal Hippocampus , 2005, Science.

[94]  B. McNaughton,et al.  Place cells, head direction cells, and the learning of landmark stability , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[95]  R. Muller,et al.  The firing of hippocampal place cells in the dark depends on the rat's recent experience , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[96]  J. Paillard Brain and space , 1991 .

[97]  K M Gothard,et al.  Dentate Gyrus and CA1 Ensemble Activity during Spatial Reference Frame Shifts in the Presence and Absence of Visual Input , 2001, The Journal of Neuroscience.

[98]  J. O’Keefe Do hippocampal pyramidal cells signal non‐spatial as well as spatial information? , 1999, Hippocampus.

[99]  John S. Brlow Inertial navigation as a basis for animal navigation , 1964 .

[100]  D. Amaral,et al.  Hippocampal‐neocortical interaction: A hierarchy of associativity , 2000, Hippocampus.

[101]  Kathleen S Rockland,et al.  Region specific micromodularity in the uppermost layers in primate cerebral cortex. , 2004, Cerebral cortex.

[102]  Ariane S Etienne,et al.  Path integration in mammals , 2004, Hippocampus.

[103]  B. McNaughton,et al.  Bimodality of theta phase precession in hippocampal place cells in freely running rats. , 2002, Journal of neurophysiology.

[104]  B. McNaughton,et al.  The contributions of position, direction, and velocity to single unit activity in the hippocampus of freely-moving rats , 1983, Experimental Brain Research.

[105]  E. Bostock,et al.  Experience‐dependent modifications of hippocampal place cell firing , 1991, Hippocampus.

[106]  R. Passingham The hippocampus as a cognitive map J. O'Keefe & L. Nadel, Oxford University Press, Oxford (1978). 570 pp., £25.00 , 1979, Neuroscience.

[107]  M. Fyhn,et al.  Spatial Representation in the Entorhinal Cortex , 2004, Science.

[108]  Bruce L. McNaughton,et al.  Differential Encoding of Behavior and Spatial Context in Deep and Superficial Layers of the Neocortex , 2005, Neuron.

[109]  Margaret N. Shouse Electrical Activity of Archicortex , 1986 .

[110]  M. Witter,et al.  Perirhinal cortex input to the hippocampus in the rat: evidence for parallel pathways, both direct and indirect. A combined physiological and anatomical study , 1999, The European journal of neuroscience.

[111]  E T Rolls,et al.  Computational constraints suggest the need for two distinct input systems to the hippocampal CA3 network , 1992, Hippocampus.

[112]  J. O’Keefe,et al.  Phase relationship between hippocampal place units and the EEG theta rhythm , 1993, Hippocampus.

[113]  Torkel Hafting,et al.  Conjunctive Representation of Position, Direction, and Velocity in Entorhinal Cortex , 2006, Science.

[114]  Terrence J. Sejnowski,et al.  ASSOCIATIVE MEMORY AND HIPPOCAMPAL PLACE CELLS , 1995 .

[115]  Floris G. Wouterlood,et al.  GABAergic Presubicular Projections to the Medial Entorhinal Cortex of the Rat , 1997, The Journal of Neuroscience.

[116]  K. Lingenhöhl,et al.  Morphological characterization of rat entorhinal neurons in vivo: soma-dendritic structure and axonal domains , 2004, Experimental Brain Research.

[117]  R. Burwell The Parahippocampal Region: Corticocortical Connectivity , 2000, Annals of the New York Academy of Sciences.

[118]  A David Redishyx,et al.  A coupled attractor model of the rodent head direction system , 1996 .

[119]  Neil Burgess,et al.  Attractor Dynamics in the Hippocampal Representation of the Local Environment , 2005, Science.

[120]  R. S. Jones,et al.  Laminar differences in recurrent excitatory transmission in the rat entorhinal cortex in vitro , 2000, Neuroscience.

[121]  G. Buzsáki Theta Oscillations in the Hippocampus , 2002, Neuron.

[122]  H. Eichenbaum,et al.  Hippocampal Neurons Encode Information about Different Types of Memory Episodes Occurring in the Same Location , 2000, Neuron.

[123]  Nathan Intrator,et al.  Objective function formulation of the BCM theory of visual cortical plasticity: Statistical connections, stability conditions , 1992, Neural Networks.

[124]  K. Jellinger,et al.  Sleep and Brain Plasticity , 2003 .

[125]  Alessandro Treves,et al.  Attractor neural networks storing multiple space representations: A model for hippocampal place fields , 1998, cond-mat/9807101.

[126]  J. Cowan,et al.  A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue , 1973, Kybernetik.

[127]  L. Nadel,et al.  The Hippocampus as a Cognitive Map , 1978 .

[128]  Chris Eliasmith,et al.  A Controlled Attractor Network Model of Path Integration in the Rat , 2005, Journal of Computational Neuroscience.

[129]  M. Bear,et al.  Synaptic plasticity: LTP and LTD , 1994, Current Opinion in Neurobiology.

[130]  Mark C. Fuhs,et al.  A Spin Glass Model of Path Integration in Rat Medial Entorhinal Cortex , 2006, The Journal of Neuroscience.

[131]  J. Cowan,et al.  A mathematical theory of visual hallucination patterns , 1979, Biological Cybernetics.

[132]  H. Mittelstaedt,et al.  Homing by path integration in a mammal , 1980, Naturwissenschaften.

[133]  G. V. Van Hoesen,et al.  Entorhinal cortex modules of the human brain , 1996, The Journal of comparative neurology.

[134]  B. McNaughton,et al.  Multistability of cognitive maps in the hippocampus of old rats , 1997, Nature.