Restructure proton conducting channels by embedding starburst POSS-g-acrylonitrile oligomer in sulfonic perfluoro polymer matrix

Abstract Unique starburst nanoparticles are synthesized via grafting polyacrylonitrile short chains to the cubic polyhedral oligomeric silsesquioxane (POSS) by atom transfer radical polymerization (ATRP). Introduction of these branched nanoparticles ( sb -POSS) into the sulfonic perfluoro polymer (SPFP, e.g. Nafion ® ) matrix in appropriate contents gives significant improvements in the performance of SPFP membranes as direct methanol fuel cell (DMFC). This enhancement is associated with the initial clustering of sb -POSS particles in the SPFP matrix when the sb -POSS content reaches to 5 wt.%. It has been found, from the differential scanning calorimetry (DSC) observation, that the SPFP molecules wage dual interactions on the sb -POSS particles, namely the hydrophobic perfluoro polymer chains of SPFP repel sb -POSS particles while the hydrophilic moieties associate with them. The content of sb -POSS strongly affects the assembly of hydrophilic channels in the membrane and, therefore, the membrane performance in a single direct methanol fuel cell (DMFC). The sb -POSS (5 wt.%)-SPFP composite membrane manifests an increase of 122% in power output of DMFC at 80 °C. In brief, this work offers a new insight into how the unique interactions between soft nanoparticles and amphiphilic polymer chains affects performances of proton exchange membranes (PEMs) in DMFC.

[1]  Jingwei Hu,et al.  Preparation and characterization of sulfated zirconia (SO42−/ZrO2)/Nafion composite membranes for PEMFC operation at high temperature/low humidity , 2006 .

[2]  D. Schiraldi,et al.  Thermal and mechanical properties of polyhedral oligomeric silsesquioxane (POSS)/polycarbonate composites , 2005 .

[3]  Robert B. Moore,et al.  State of understanding of nafion. , 2004, Chemical reviews.

[4]  Ravindra Datta,et al.  Synthesis and characterization of Nafion®-MO2 (M = Zr, Si, Ti) nanocomposite membranes for higher temperature PEM fuel cells , 2005 .

[5]  Richard K. Baldwin,et al.  Methods for effecting monofunctionalization of (CH2CH)8Si8O12 , 1999 .

[6]  S. Pimbert,et al.  Calorimetric study of fluorinated methacrylic and vinyl polymer blends: part 2: correlation between miscibility, chemical structure and χ 12 interaction parameter in binary systems , 2002 .

[7]  Andrew B. Bocarsly,et al.  Silicon Oxide Nafion Composite Membranes for Proton-Exchange Membrane Fuel Cell Operation at 80-140°C , 2002 .

[8]  Bryan S. Pivovar,et al.  Proton exchange membrane for DMFC and H2/air fuel cells: Synthesis and characterization of partially fluorinated disulfonated poly(arylene ether benzonitrile) copolymers , 2007 .

[9]  Joseph Jagur-Grodzinski,et al.  Polymeric materials for fuel cells: concise review of recent studies† , 2007 .

[10]  Joseph D. Lichtenhan,et al.  Hybrid organic-inorganic thermoplastics : Styryl-based polyhedral oligomeric silsesquioxane polymers , 1996 .

[11]  M. Nogami,et al.  Hygroscopic-oxides/Nafion® hybrid electrolyte for direct methanol fuel cells , 2006 .

[12]  R. Laine,et al.  Organic/Inorganic Nanocomposite Star Polymers via Atom Transfer Radical Polymerization of Methyl Methacrylate Using Octafunctional Silsesquioxane Cores , 2001 .

[13]  K. Kreuer On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells , 2001 .

[14]  G. Robertson,et al.  Sulfonated copoly(phthalazinone ether ketone nitrile)s as proton exchange membrane materials , 2006 .

[15]  J. Drobny Blends and composites based on fluoropolymers , 2001 .

[16]  K. Matyjaszewski,et al.  Synthesis of Polymer Brushes Using Atom Transfer Radical Polymerization , 2003 .

[17]  J. Gilman,et al.  Silsesquioxane-siloxane copolymers from polyhedral silsesquioxanes , 1993 .

[18]  J. Mcgrath,et al.  Novel proton conducting sulfonated poly(arylene ether) copolymers containing aromatic nitriles , 2004 .

[19]  S. R. Landor,et al.  Electric dipole moments of some acrylonitriles, allyl cyanides, and alicyclic nitriles , 1973 .

[20]  Angelika Heinzel,et al.  A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells , 1999 .

[21]  L. Hong,et al.  In situ implantation of PolyPOSS blocks in Nafion® matrix to promote its performance in direct methanol fuel cell , 2008 .

[22]  F. Feher,et al.  Syntheses of highly functionalized cube-octameric polyhedral oligosilsesquioxanes (R8Si8O12) , 1999 .

[23]  Krzysztof Matyjaszewski,et al.  Synthesis and characterization of organic/inorganic hybrid nanoparticles: Kinetics of surface-initiated atom transfer radical polymerization and morphology of hybrid nanoparticle ultrathin films , 2003 .

[24]  J. Lichtenhan,et al.  Linear Hybrid Polymer Building Blocks: Methacrylate-Functionalized Polyhedral Oligomeric Silsesquioxane Monomers and Polymers , 1995 .

[25]  Hyuk Chang,et al.  Nanocomposite membranes of surface-sulfonated titanate and Nafion® for direct methanol fuel cells , 2006 .

[26]  M. Berthelot,et al.  Hydrogen-bond basicity of nitriles , 1993 .

[27]  Prabhuram Joghee,et al.  Preparation and characterization of hybrid Nafion–silica membrane doped with phosphotungstic acid for high temperature operation of proton exchange membrane fuel cells , 2004 .

[28]  Changpeng Liu,et al.  Low methanol permeable composite Nafion/silica/PWA membranes for low temperature direct methanol fuel cells , 2005 .

[29]  G. Goward,et al.  Proton Dynamics of Nafion and Nafion/SiO2 Composites by Solid State NMR and Pulse Field Gradient NMR , 2007 .

[30]  James M. Fenton,et al.  Composite silica/Nafion® membranes prepared by tetraethylorthosilicate sol-gel reaction and solution casting for direct methanol fuel cells , 2006 .

[31]  Hyun Jae Kim,et al.  Nafion–Nafion/polyvinylidene fluoride–Nafion laminated polymer membrane for direct methanol fuel cells , 2004 .

[32]  Wenhua Huang,et al.  A Methanol Impermeable Proton Conducting Composite Electrolyte System , 1995 .

[33]  W. Whang,et al.  Low dielectric polyimide/poly(silsesquioxane)-like nanocomposite material , 2001 .

[34]  Chaobin He,et al.  Polyimide/POSS nanocomposites: interfacial interaction, thermal properties and mechanical properties , 2003 .

[35]  R. Laine,et al.  Organic/Inorganic Imide Nanocomposites from Aminophenylsilsesquioxanes , 2003 .

[36]  R. Laine,et al.  Organic/inorganic hybrid composites from cubic silsesquioxanes. Epoxy resins of octa(dimethylsiloxyethylcyclohexylepoxide) silsesquioxane , 2003 .

[37]  A. Trivisonno,et al.  Direct methanol fuel cell operation with pre-stretched recast Nafion® , 2008 .

[38]  Nicholas P. Cheremisinoff,et al.  Handbook of polymer science and technology , 1989 .

[39]  G. Robertson,et al.  Comparison of PEM Properties of Copoly(aryl ether ether nitrile)s Containing Sulfonic Acid Bonded to Naphthalene in Structurally Different Ways , 2007 .

[40]  M. E. Wright,et al.  Synthesis and Thermal Curing of Aryl-Ethynyl-Terminated coPOSS Imide Oligomers: New Inorganic/Organic Hybrid Resins , 2003 .

[41]  Chen,et al.  Association of Nafion with Polypyrrole Nanoparticles in a Hydrophilic Polymer Network: Effects on Proton Transport. , 1999, Journal of colloid and interface science.

[42]  R. Wycisk,et al.  Stretched Recast Nafion for Direct Methanol Fuel Cells , 2007 .

[43]  V. Antonucci,et al.  Hybrid Nafion-silica membranes doped with heteropolyacids for application in direct methanol fuel cells , 2001 .