Default reasoning from conditional knowledge bases: Complexity and tractable cases

Abstract Conditional knowledge bases have been proposed as belief bases that include defeasible rules (also called defaults) of the form “ φ→ψ ”, which informally read as “generally, if φ then ψ ”. Such rules may have exceptions, which can be handled in different ways. A number of entailment semantics for conditional knowledge bases have been proposed in the literature. However, while the semantic properties and interrelationships of these formalisms are quite well understood, about their computational properties only partial results are known so far. In this paper, we fill these gaps and first draw a precise picture of the complexity of default reasoning from conditional knowledge bases: Given a conditional knowledge base KB and a default φ→ψ , does KB entail φ→ψ ? We classify the complexity of this problem for a number of well-known approaches (including Goldszmidt et al.'s maximum entropy approach and Geffner's conditional entailment), where we consider the general propositional case as well as natural syntactic restrictions (in particular, to Horn and literal-Horn conditional knowledge bases). As we show, the more sophisticated semantics for conditional knowledge bases are plagued with intractability in all these fragments. We thus explore cases in which these semantics are tractable, and find that most of them enjoy this property on feedback-free Horn conditional knowledge bases, which constitute a new, meaningful class of conditional knowledge bases. Furthermore, we generalize previous tractability results from Horn to q-Horn conditional knowledge bases, which allow for a limited use of disjunction. Our results complement and extend previous results, and contribute in refining the tractability/intractability frontier of default reasoning from conditional knowledge bases. They provide useful insight for developing efficient implementations.

[1]  Drew McDermott,et al.  Nonmonotonic Logic II: Nonmonotonic Modal Theories , 1982, JACM.

[2]  Ilkka Niemelä On the decidability and complexity of autoepistemic reasoning , 1992, Fundam. Informaticae.

[3]  Drew McDermott,et al.  Non-Monotonic Logic I , 1987, Artif. Intell..

[4]  Dov M. Gabbay,et al.  Handbook of Logic in Artificial Intelligence and Logic Programming: Volume 3: Nonmonotonic Reasoning and Uncertain Reasoning , 1994 .

[5]  Bernhard Nebel,et al.  How Hard is it to Revise a Belief Base , 1996 .

[6]  Philippe Lamarre,et al.  A Promenade from Monotonicity to Non-Monotonicity Following a Theorem Prover , 1992, KR.

[7]  Craig Boutilier,et al.  Conditional Logics of Normality: A Modal Approach , 1994, Artif. Intell..

[8]  Georg Gottlob,et al.  Complexity of Propositional Knowledge Base Revision , 1992, CNKBS.

[9]  Daniel Lehmann,et al.  What does a Conditional Knowledge Base Entail? , 1989, Artif. Intell..

[10]  Anil Nerode,et al.  Mixed integer programming methods for computing nonmonotonic deductive databases , 1994, JACM.

[11]  Georg Gottlob,et al.  The complexity of logic-based abduction , 1993, JACM.

[12]  Hector J. Levesque,et al.  Hard problems for simple default logics , 1992 .

[13]  Georg Gottlob,et al.  Fixed-parameter complexity in AI and nonmonotonic reasoning , 1999, Artif. Intell..

[14]  Alessandro Saffiotti,et al.  Belief functions and default reasoning , 1995, Artif. Intell..

[15]  Philippe Lamarre,et al.  S4 as the Conditional Logic of Nonmonotonicity , 1991, KR.

[16]  Panos M. Pardalos,et al.  Satisfiability Problem: Theory and Applications , 1997 .

[17]  Bart Selman,et al.  The Comparative Linguistics of Knowledge Representation , 1995, IJCAI.

[18]  Tomi Janhunen On the Intertranslatability of Autoepistemic, Default and Priority Logics, and Parallel Circumscription , 1998, JELIA.

[19]  Georg Gottlob,et al.  Abduction from Logic Programs: Semantics and Complexity , 1997, Theor. Comput. Sci..

[20]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[21]  Jonathan Stillman,et al.  It's Not My Default: The Complexity of Membership Problems in Restricted Propositional Default Logics , 1990, AAAI.

[22]  Hector Geffner,et al.  Conditional Entailment: Bridging two Approaches to Default Reasoning , 1992, Artif. Intell..

[23]  Gerald Pfeifer,et al.  The KR System dlv: Progress Report, Comparisons and Benchmarks , 1998, KR.

[24]  Rachel Anne Bourne,et al.  Default reasoning using maximum entropy and variable strength defaults , 1999 .

[25]  Simon Parsons,et al.  Maximum Entropy and Variable Strength Defaults , 1999, IJCAI.

[26]  Jonathan Stillman,et al.  The Complexity of Propositional Default Logics , 1992, AAAI.

[27]  Georg Gottlob,et al.  Fixed-Parameter Complexity in AI and Nonmonotonic Reasoning , 1999, LPNMR.

[28]  Klaus W. Wagner,et al.  Bounded Query Classes , 1990, SIAM J. Comput..

[29]  Didier Dubois,et al.  Possibilistic Logic, Preferential Models, Non-monotonicity and Related Issues , 1991, IJCAI.

[30]  Dov M. Gabbay,et al.  Handbook of logic in artificial intelligence and logic programming (vol. 1) , 1993 .

[31]  Peter Gärdenfors,et al.  On the logic of theory change: Partial meet contraction and revision functions , 1985, Journal of Symbolic Logic.

[32]  Joseph Y. Halpern,et al.  From Statistical Knowledge Bases to Degrees of Belief , 1996, Artif. Intell..

[33]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[34]  Didier Dubois,et al.  Nonmonotonic Reasoning, Conditional Objects and Possibility Theory , 1997, Artif. Intell..

[35]  David S. Johnson,et al.  A Catalog of Complexity Classes , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[36]  KrausSarit,et al.  Nonmonotonic reasoning, preferential models and cumulative logics , 1990 .

[37]  James P. Delgrande,et al.  A First-Order Conditional Logic for Prototypical Properties , 1987, Artif. Intell..

[38]  Alan L. Selman,et al.  A Taxonomy of Complexity Classes of Functions , 1994, J. Comput. Syst. Sci..

[39]  Jussi Rintanen,et al.  Improvements to the Evaluation of Quantified Boolean Formulae , 1999, IJCAI.

[40]  John McCarthy,et al.  Circumscription - A Form of Non-Monotonic Reasoning , 1980, Artif. Intell..

[41]  Hector Geffner,et al.  Default reasoning - causal and conditional theories , 1992 .

[42]  Moisés Goldszmidt,et al.  A Maximum Entropy Approach to Nonmonotonic Reasoning , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[43]  Joseph Y. Halpern,et al.  On the Complexity of Conditional Logics , 1994, KR.

[44]  EiterThomas,et al.  The complexity of logic-based abduction , 1995 .

[45]  H. Prade,et al.  Possibilistic logic , 1994 .

[46]  Paolo Liberatore,et al.  The Complexity of Belief Update , 1997, IJCAI.

[47]  Moisés Goldszmidt,et al.  On the Consistency of Defeasible Databases , 1991, Artif. Intell..

[48]  Mark W. Krentel The complexity of optimization problems , 1986, STOC '86.

[49]  G. Aldo Antonelli,et al.  Non-monotonic Logic , 2001 .

[50]  Didier Dubois,et al.  Inconsistency Management and Prioritized Syntax-Based Entailment , 1993, IJCAI.

[51]  Georg Gottlob,et al.  On the complexity of propositional knowledge base revision, updates, and counterfactuals , 1992, Artif. Intell..

[52]  Yoav Shoham,et al.  A semantical approach to nonmonotonic logics , 1987, LICS 1987.

[53]  J. Van Leeuwen,et al.  Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .

[54]  Marco Schaerf,et al.  An Algorithm to Evaluate Quantified Boolean Formulae , 1998, AAAI/IAAI.

[55]  Craig Boutilier Conditional Logics of Normality as Modal Systems , 1990, AAAI.

[56]  Judea Pearl,et al.  Qualitative Probabilities for Default Reasoning, Belief Revision, and Causal Modeling , 1996, Artif. Intell..

[57]  Maurizio Lenzerini,et al.  The Complexity of Propositional Closed World Reasoning and Circumscription , 1994, J. Comput. Syst. Sci..

[58]  Sarit Kraus,et al.  Nonmonotonic Reasoning, Preferential Models and Cumulative Logics , 1990, Artif. Intell..

[59]  Craig Boutilier,et al.  Unifying Default Reasoning and Belief Revision in a Modal Framework , 1994, Artif. Intell..

[60]  D. Dubois,et al.  Conditional Objects as Nonmonotonic Consequence Relationships , 1994, IEEE Trans. Syst. Man Cybern. Syst..

[61]  Joseph Y. Halpern,et al.  Plausibility measures and default reasoning , 1996, JACM.

[62]  Victor W. Marek,et al.  Nonmonotonic logic - context-dependent reasoning , 1997, Artificial intelligence.

[63]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[64]  Stefan Woltran,et al.  Solving Advanced Reasoning Tasks Using Quantified Boolean Formulas , 2000, AAAI/IAAI.

[65]  Georg Gottlob,et al.  Complexity Results for Nonmonotonic Logics , 1992, J. Log. Comput..

[66]  Didier Dubois,et al.  Representing Default Rules in Possibilistic Logic , 1992, KR.

[67]  James P. Delgrande,et al.  On First-Order Conditional Logics , 1998, Artif. Intell..

[68]  Moisés Goldszmidt,et al.  System-Z+: A Formalism for Reasoning with Variable-Strength Defaults , 1991, AAAI.

[69]  Bernhard Nebel,et al.  Base Revision Operations and Schemes: Semantics, Representation and Complexity , 1994, ECAI.

[70]  Vladimir Lifschitz,et al.  Computing Circumscription , 1985, IJCAI.

[71]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[72]  Georg Gottlob,et al.  Complexity and expressive power of logic programming , 2001, CSUR.

[73]  Georg Gottlob,et al.  Propositional Circumscription and Extended Closed-World Reasoning are IIp2-Complete , 1993, Theor. Comput. Sci..

[74]  Dov M. Gabbay,et al.  Handbook of logic in artificial intelligence and logic programming (Vol. 4): epistemic and temporal reasoning , 1995 .

[75]  Dana S. Nau,et al.  On the Use of Integer Programming Models in AI Planning , 1999, IJCAI.

[76]  Marco Cadoli,et al.  The Complexity of Model Checking for Circumscriptive Formulae , 1992, Inf. Process. Lett..

[77]  Wolfgang Spohn,et al.  Ordinal Conditional Functions: A Dynamic Theory of Epistemic States , 1988 .

[78]  Hirofumi Katsuno,et al.  Propositional Knowledge Base Revision and Minimal Change , 1991, Artif. Intell..

[79]  Jürg Kohlas,et al.  Handbook of Defeasible Reasoning and Uncertainty Management Systems , 2000 .

[80]  Endre Boros,et al.  Recognition of q-Horn Formulae in Linear Time , 1994, Discret. Appl. Math..

[81]  Moisés Goldszmidt,et al.  Rank-based Systems: A Simple Approach to Belief Revision, Belief Update, and Reasoning about Evidence and Actions , 1992, KR.

[82]  Jacobo Torán,et al.  Computing Functions with Parallel Queries to NP , 1995, Theor. Comput. Sci..

[83]  Bernhard Nebel,et al.  Belief Revision and Default Reasoning: Syntax-Based Approaches , 1991, KR.

[84]  Raymond Reiter,et al.  A Logic for Default Reasoning , 1987, Artif. Intell..

[85]  Dov M. Gabbay,et al.  Handbook of defeasible reasoning and uncertainty management systems: volume 2: reasoning with actual and potential contradictions , 1998 .

[86]  Robert C. Moore Semantical Considerations on Nonmonotonic Logic , 1985, IJCAI.

[87]  Francesco M. Donini,et al.  Feasibility and Unfeasibility of Off-Line Processing , 1996, ISTCS.

[88]  Victor W. Marek,et al.  Computing with Default Logic , 1999, Artif. Intell..

[89]  E. W. Adams,et al.  The logic of conditionals , 1975 .

[90]  Grigoris Antoniou,et al.  Nonmonotonic reasoning , 1997 .

[91]  Judea Pearl,et al.  Probabilistic Semantics for Nonmonotonic Reasoning: A Survey , 1989, KR.

[92]  Samuel R. Buss,et al.  On Truth-Table Reducibility to SAT , 1991, Inf. Comput..

[93]  Mukesh Dalal,et al.  Investigations into a Theory of Knowledge Base Revision , 1988, AAAI.