Bipartite network projection and personal recommendation.

One-mode projecting is extensively used to compress bipartite networks. Since one-mode projection is always less informative than the bipartite representation, a proper weighting method is required to better retain the original information. In this article, inspired by the network-based resource-allocation dynamics, we raise a weighting method which can be directly applied in extracting the hidden information of networks, with remarkably better performance than the widely used global ranking method as well as collaborative filtering. This work not only provides a creditable method for compressing bipartite networks, but also highlights a possible way for the better solution of a long-standing challenge in modern information science: How to do a personal recommendation.

[1]  M. Newman Coauthorship networks and patterns of scientific collaboration , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Bao-qun Yin,et al.  Power-law strength-degree correlation from resource-allocation dynamics on weighted networks. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  Kazuyuki Tanaka,et al.  Generation of complex bipartite graphs by using a preferential rewiring process. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  Kenneth Y. Goldberg,et al.  Eigentaste: A Constant Time Collaborative Filtering Algorithm , 2001, Information Retrieval.

[5]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[6]  Andrei Z. Broder,et al.  Graph structure in the Web , 2000, Comput. Networks.

[7]  Jonathan L. Herlocker,et al.  Evaluating collaborative filtering recommender systems , 2004, TOIS.

[8]  M Ausloos,et al.  Uncovering collective listening habits and music genres in bipartite networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  Ying Fan,et al.  Weighted networks of scientific communication: the measurement and topological role of weight , 2005 .

[10]  Mikko Alava,et al.  Correlations in bipartite collaboration networks , 2005, physics/0508027.

[11]  S Maslov,et al.  Extracting hidden information from knowledge networks. , 2001, Physical review letters.

[12]  Vittorio Loreto,et al.  Collaborative Tagging and Semiotic Dynamics , 2006, ArXiv.

[13]  Greg Linden,et al.  Amazon . com Recommendations Item-to-Item Collaborative Filtering , 2001 .

[14]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[15]  L. da F. Costa,et al.  Characterization of complex networks: A survey of measurements , 2005, cond-mat/0505185.

[16]  M. Newman,et al.  Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  S. Strogatz Exploring complex networks , 2001, Nature.

[18]  H E Stanley,et al.  Classes of small-world networks. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Petter Holme,et al.  Network bipartivity. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[21]  Tao Zhou,et al.  Model and empirical study on some collaboration networks , 2006 .

[22]  J. Rogers Chaos , 1876 .

[23]  Yi-Cheng Zhang,et al.  Information filtering via Iterative Refinement , 2006, ArXiv.

[24]  J. A. Rodríguez-Velázquez,et al.  Spectral measures of bipartivity in complex networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  John Scott What is social network analysis , 2010 .

[26]  Jon Kleinberg,et al.  Authoritative sources in a hyperlinked environment , 1999, SODA '98.

[27]  M E Newman,et al.  Scientific collaboration networks. I. Network construction and fundamental results. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  Christopher R. Myers,et al.  Software systems as complex networks: structure, function, and evolvability of software collaboration graphs , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  A. Barabasi,et al.  Evolution of the social network of scientific collaborations , 2001, cond-mat/0104162.

[30]  Michel Wedel,et al.  Leveraging Missing Ratings to Improve Online Recommendation Systems , 2006 .

[31]  Josep Lluís de la Rosa i Esteva,et al.  A Taxonomy of Recommender Agents on the Internet , 2003, Artificial Intelligence Review.

[32]  L. Amaral,et al.  The web of human sexual contacts , 2001, Nature.

[33]  V. Latora,et al.  Complex networks: Structure and dynamics , 2006 .

[34]  Alexander Dekhtyar,et al.  Information Retrieval , 2018, Lecture Notes in Computer Science.

[35]  S. Morris,et al.  Social inertia in collaboration networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  Ravi Kumar,et al.  Recommendation Systems , 2001 .

[37]  Markus Koppenberger,et al.  Topology of music recommendation networks. , 2006, Chaos.

[38]  Claude Frasson,et al.  Discovering Intelligent Agent: A Tool for Helping Students Searching a Library , 2004, Intelligent Tutoring Systems.

[39]  Bradley N. Miller,et al.  GroupLens: applying collaborative filtering to Usenet news , 1997, CACM.

[40]  Tao Zhou,et al.  MODELLING COLLABORATION NETWORKS BASED ON NONLINEAR PREFERENTIAL ATTACHMENT , 2007 .

[41]  R. Albert,et al.  The large-scale organization of metabolic networks , 2000, Nature.

[42]  S. N. Dorogovtsev,et al.  Self-organization of collaboration networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  S. N. Dorogovtsev,et al.  Evolution of networks , 2001, cond-mat/0106144.

[44]  M. Newman Analysis of weighted networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  Marta C. González,et al.  Cycles and clustering in bipartite networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  R. Kohli,et al.  Internet Recommendation Systems , 2000 .

[47]  Tao Zhou,et al.  Evolving model of weighted networks inspired by scientific collaboration networks , 2005 .

[48]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[49]  Yi-Cheng Zhang,et al.  Exploring an opinion network for taste prediction: an empirical study , 2008 .

[50]  Vittorio Loreto,et al.  Semiotic dynamics and collaborative tagging , 2006, Proceedings of the National Academy of Sciences.

[51]  M Ausloos,et al.  N-body decomposition of bipartite author networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[52]  Nicholas J. Belkin,et al.  Helping people find what they don't know , 2000, CACM.

[53]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .