Ultrafast plasmonic nanowire lasers near the surface plasmon frequency

Electron scattering limits the optical excitations produced by metal-based lasers to femtosecond timescales. But sub-picosecond pulsing can be achieved in a plasmonic nanowire laser by operating near the surface plasmon frequency.

[1]  Mark I. Stockman,et al.  The spaser as a nanoscale quantum generator and ultrafast amplifier , 2009, 0908.3559.

[2]  J. I. Dijkhuis,et al.  Room-temperature laser emission of ZnO nanowires explained by many-body theory. , 2012, Physical review letters.

[3]  Rupert F. Oulton,et al.  Surface plasmon lasers: sources of nanoscopic light , 2012 .

[4]  Dirk Englund,et al.  Ultrafast photonic crystal nanocavity laser , 2006 .

[5]  C. Klingshirn ZnO: material, physics and applications. , 2007, Chemphyschem : a European journal of chemical physics and physical chemistry.

[6]  Zongfu Yu,et al.  Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna , 2009 .

[7]  Q. Xiong,et al.  Wavelength tunable single nanowire lasers based on surface plasmon polariton enhanced Burstein-Moss effect. , 2013, Nano letters.

[8]  Gennady Shvets,et al.  Plasmonic Nanolaser Using Epitaxially Grown Silver Film , 2012, Science.

[9]  V. Shalaev,et al.  Demonstration of a spaser-based nanolaser , 2009, Nature.

[10]  J. Ullrich,et al.  Projectile-charge sign dependence of four-particle dynamics in helium double ionization. , 2003, Physical review letters.

[11]  D. Bergman,et al.  Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. , 2003, Physical review letters.

[12]  Martin T. Hill,et al.  Room-temperature continuous wave lasing in deep-subwavelength metallic cavities under electrical injection , 2012 .

[13]  Jacob B Khurgin,et al.  Scaling of losses with size and wavelength in nanoplasmonics and metamaterials , 2011 .

[14]  E. Mazur,et al.  Ultrafast exciton dynamics in ZnO: Excitonic versus electron-hole plasma lasing , 2011 .

[15]  T. Dekorsy,et al.  On the nature of “coherent artifact” , 2005 .

[16]  Euan Hendry,et al.  Exciton and electron-hole plasma formation dynamics in ZnO , 2007 .

[17]  Ortwin Hess,et al.  A full-time-domain approach to spatio-temporal dynamics of semiconductor lasers. I. Theoretical formulation , 2008 .

[18]  S. Adachi,et al.  Optical constants of ZnO , 1997 .

[19]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[20]  Federico Capasso,et al.  Laser action in nanowires: Observation of the transition from amplified spontaneous emission to laser oscillation , 2008 .

[21]  A. Mizrahi,et al.  Thresholdless nanoscale coaxial lasers , 2011, Nature.

[22]  Lukas Novotny,et al.  Optical frequency mixing at coupled gold nanoparticles. , 2007, Physical review letters.

[23]  Andreas Pusch,et al.  Control and dynamic competition of bright and dark lasing states in active nanoplasmonic metamaterials , 2011, 1112.4367.

[24]  R. Trebino Measuring the seemingly immeasurable , 2011 .

[25]  Fouad Karouta,et al.  Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides. , 2009, Optics express.

[26]  Mohsen Rahmani,et al.  University of Birmingham Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna , 2016 .

[27]  In-Yong Park,et al.  High-harmonic generation by resonant plasmon field enhancement , 2008, Nature.

[28]  Claus Klingshirn,et al.  Semiconductor Optics , 1995 .

[29]  M. Majewski,et al.  Optical properties of metallic films for vertical-cavity optoelectronic devices. , 1998, Applied optics.

[30]  Jacob B Khurgin,et al.  Injection pumped single mode surface plasmon generators: threshold, linewidth, and coherence. , 2012, Optics express.

[31]  Xiang Zhang,et al.  Strongly enhanced molecular fluorescence inside a nanoscale waveguide gap. , 2011, Nano letters.

[32]  R. Dasari,et al.  Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .

[33]  X. Zhang,et al.  A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation , 2008 .

[34]  Volker J. Sorger,et al.  Plasmon lasers: coherent light source at molecular scales , 2013 .

[35]  Yiying Wu,et al.  Room-Temperature Ultraviolet Nanowire Nanolasers , 2001, Science.

[36]  Ortwin Hess,et al.  A full time-domain approach to spatio-temporal dynamics of semiconductor lasers. II. Spatio-temporal dynamics , 2008 .

[37]  L. Casperson Threshold characteristics of multimode laser oscillators , 1975 .

[38]  Xiang Zhang,et al.  Room-temperature sub-diffraction-limited plasmon laser by total internal reflection. , 2010, Nature materials.

[39]  Evelyn L. Hu,et al.  Large spontaneous emission enhancement in plasmonic nanocavities , 2012, Nature Photonics.

[40]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[41]  Jacob B. Khurgin,et al.  Comparative analysis of spasers, vertical-cavity surface-emitting lasers and surface-plasmon-emitting diodes , 2014, Nature Photonics.

[42]  U. Peschel,et al.  Continuous wave nanowire lasing. , 2013, Nano letters.

[43]  Federico Capasso,et al.  Optically pumped nanowire lasers: invited review , 2010 .