The effects of galaxy formation on the matter power spectrum: a challenge for precision cosmology

Upcoming weak lensing surveys, such as LSST, EUCLID and WFIRST, aim to measure the matter power spectrum with unprecedented accuracy. In order to fully exploit these observations, models are needed that, given a set of cosmological parameters, can predict the non-linear matter power spectrum at the level of 1 per cent or better for scales corresponding to comoving wavenumbers 0.1 k 10h Mpc −1 . We have employed the large suite of simulations from the OverWhelmingly Large Simulations (OWLS) project to investigate the effects of various baryonic processes on the matter power spectrum. In addition, we have examined the distribution of power over different mass components, the back-reaction of the baryons on the cold dark matter and the evolution of the dominant effects on the matter power spectrum. We find that single baryonic processes are capable of changing the power spectrum by up to several tens of per cent. Our simulation that includes AGN feedback, which we consider to be our most realistic simulation as, unlike those used in previous studies, it has been shown to solve the overcooling problem and to reproduce optical and X-ray observations of groups of galaxies, predicts a decrease in power relative to a dark matter only simulation ranging, at z = 0, from 1 per cent at k ≈ 0.3h Mpc −1 to 10 per cent at k ≈ 1h Mpc −1 and to 30 per cent at k ≈ 10h Mpc −1 . This contradicts the naive view that baryons raise the power through cooling, which is the dominant effect only for k 70h Mpc −1 . Therefore, baryons, and particularly AGN feedback, cannot be ignored in theoretical power spectra for k 0.3h Mpc −1 . It will thus be necessary to improve our understanding of feedback processes

[1]  P. Schneider,et al.  Ray-tracing through the Millennium Simulation: Born corrections and lens-lens coupling in cosmic shear and galaxy-galaxy lensing , 2008, 0809.5035.

[2]  The Astrophysical Journal, submitted Preprint typeset using L ATEX style emulateapj v. 6/22/04 EFFECTS OF COOLING AND STAR FORMATION ON THE BARYON FRACTIONS IN CLUSTERS , 2005 .

[3]  V. Springel,et al.  The Influence of Baryons on the Clustering of Matter and Weak-Lensing Surveys , 2005, astro-ph/0512426.

[4]  R. Teyssier Cosmological hydrodynamics with adaptive mesh refinement - A new high resolution code called RAMSES , 2001, astro-ph/0111367.

[5]  Yehuda Hoffman,et al.  Constrained Simulations of the Real Universe. II. Observational Signatures of Intergalactic Gas in the Local Supercluster Region , 2001, astro-ph/0109077.

[6]  S. J. Dodds,et al.  Non-linear evolution of cosmological power spectra , 1996 .

[7]  D. Higdon,et al.  THE COYOTE UNIVERSE. I. PRECISION DETERMINATION OF THE NONLINEAR MATTER POWER SPECTRUM , 2008, 0812.1052.

[8]  Stephan Rosswog,et al.  Astrophysical smooth particle hydrodynamics , 2009, 0903.5075.

[9]  J. Peacock,et al.  Halo occupation numbers and galaxy bias , 2000, astro-ph/0005010.

[10]  T. Paumard,et al.  AN EXTREMELY TOP-HEAVY INITIAL MASS FUNCTION IN THE GALACTIC CENTER STELLAR DISKS , 2009, 0908.2177.

[11]  Douglas H. Rudd,et al.  Effects of Baryons and Dissipation on the Matter Power Spectrum , 2007 .

[12]  J. Schaye,et al.  Simulating galactic outflows with kinetic supernova feedback , 2008, 0801.2770.

[13]  A. Zentner,et al.  Self-calibration of tomographic weak lensing for the physics of baryons to constrain dark energy , 2007, 0709.4029.

[14]  R. Teyssier,et al.  On the onset of galactic winds in quiescent star forming galaxies , 2007, 0707.3376.

[15]  A. Kashlinsky,et al.  Large-scale structure in the Universe , 1991, Nature.

[16]  Piet Hut,et al.  A hierarchical O(N log N) force-calculation algorithm , 1986, Nature.

[17]  F. Hoyle,et al.  The effect of interstellar matter on climatic variation , 1939, Mathematical Proceedings of the Cambridge Philosophical Society.

[18]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[19]  Jayaram N. Chengalur,et al.  Thick gas discs in faint dwarf galaxies , 2010, 1002.4474.

[20]  F. Hoyle,et al.  On the Mechanism of Accretion by Stars , 1944 .

[21]  J. Schaye,et al.  The effect of photoionization on the cooling rates of enriched, astrophysical plasmas , 2008, 0807.3748.

[22]  A. Hamilton,et al.  Reconstructing the primordial spectrum of fluctuations of the universe from the observed nonlinear clustering of galaxies , 1991 .

[23]  Jr.,et al.  The Global Schmidt law in star forming galaxies , 1997, astro-ph/9712213.

[24]  J. Peacock,et al.  Stable clustering, the halo model and non-linear cosmological power spectra , 2002, astro-ph/0207664.

[25]  Ravi Sheth,et al.  Halo Models of Large Scale Structure , 2002, astro-ph/0206508.

[26]  S. Colombi,et al.  Accurate estimators of power spectra in N‐body simulations , 2008, 0811.0313.

[27]  AGN Outflows and the Matter Power Spectrum , 2006, astro-ph/0604308.

[28]  S. Kay,et al.  Impact of baryon physics on dark matter structures: a detailed simulation study of halo density profiles , 2010, 1001.3447.

[29]  Alexander S. Szalay,et al.  Cosmological constraints from the clustering of the Sloan Digital Sky Survey DR7 luminous red galaxies (vol 404, pg 60, 2010) , 2009, 0907.1659.

[30]  T. Quinn,et al.  Gasoline: a flexible, parallel implementation of TreeSPH , 2003, astro-ph/0303521.

[31]  Calibrating the nonlinear matter power spectrum: Requirements for future weak lensing surveys , 2004, astro-ph/0412142.

[32]  R. Larson Early star formation and the evolution of the stellar initial mass function in galaxies , 1998, astro-ph/9808145.

[33]  J. Schaye,et al.  Cosmological simulations of the growth of supermassive black holes and feedback from active galactic nuclei: method and tests , 2009, 0904.2572.

[34]  A. Szalay,et al.  The statistics of peaks of Gaussian random fields , 1986 .

[35]  H. Hoekstra,et al.  Very weak lensing in the CFHTLS Wide: Cosmology from cosmic shear in the linear regime , 2007, 0712.0884.

[36]  SUBMITTED TO THE ASTROPHYSICAL JOURNAL Preprint typeset using L ATEX style emulateapj v. 04/03/99 STAR FORMATION THRESHOLDS AND GALAXY EDGES: WHY AND WHERE , 2002 .

[37]  J. Schaye,et al.  On the relation between the Schmidt and Kennicutt-Schmidt star formation laws and its implications for numerical simulations , 2007, 0709.0292.

[38]  V. Springel,et al.  Gas expulsion by quasar-driven winds as a solution to the overcooling problem in galaxy groups and clusters , 2010, 1008.4799.

[39]  Evolution of cosmological dark matter perturbations , 2002, astro-ph/0203507.

[40]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[41]  G. Stinson,et al.  Star formation and feedback in smoothed particle hydrodynamic simulations – I. Isolated galaxies , 2006, astro-ph/0602350.

[42]  J. Schaye,et al.  The physics driving the cosmic star formation history , 2009, 0909.5196.

[43]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: power-spectrum analysis of the final data set and cosmological implications , 2005, astro-ph/0501174.

[44]  J. Schaye,et al.  Towards an understanding of the evolution of the scaling relations for supermassive black holes , 2010, 1005.0844.

[45]  Guohong Xu A new parallel N body gravity solver: TPM , 1994, astro-ph/9409021.

[46]  V. Springel,et al.  The case for AGN feedback in galaxy groups , 2009, 0911.2641.

[47]  Alessandro Bressan,et al.  Can the faint submillimetre galaxies be explained in the Λ cold dark matter model , 2005 .

[48]  M. White Baryons and weak lensing power spectra , 2004, astro-ph/0405593.

[49]  V. Springel,et al.  Cosmological smoothed particle hydrodynamics simulations: a hybrid multiphase model for star formation , 2002, astro-ph/0206393.

[50]  G. Stinson,et al.  High-accuracy power spectra including baryonic physics in dynamical Dark Energy models , 2010, 1005.4683.

[51]  R. Teyssier,et al.  The effect of baryons on the variance and the skewness of the mass distribution in the Universe at small scales , 2009, 0905.2615.

[52]  J. Schaye,et al.  Chemical enrichment in cosmological, smoothed particle hydrodynamics simulations , 2009, 0902.1535.

[53]  S. Kay,et al.  Dark matter halo concentrations in the Wilkinson Microwave Anisotropy Probe year 5 cosmology , 2008, 0804.2486.

[54]  Yannick Mellier,et al.  Evidence of the accelerated expansion of the Universe from weak lensing tomography with COSMOS , 2009, 0911.0053.

[56]  L. Knox,et al.  Effect of Hot Baryons on the Weak-Lensing Shear Power Spectrum , 2004, astro-ph/0409198.

[57]  J. A. PeacockS.J. Dodds,et al.  Reconstructing the linear power spectrum of cosmological mass fluctuations , 1993, astro-ph/9311057.

[58]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[59]  T. D. Matteo,et al.  Modelling feedback from stars and black holes in galaxy mergers , 2004, astro-ph/0411108.

[60]  Adam Amara,et al.  iCosmo: an interactive cosmology package , 2008, 0810.1285.

[61]  U. Seljak Analytic model for galaxy and dark matter clustering , 2000, astro-ph/0001493.

[62]  Volker Springel,et al.  Inferring the dark matter power spectrum from the Lyman α forest in high-resolution QSO absorption spectra , 2004, astro-ph/0404600.

[63]  Wayne Hu,et al.  Power Spectra for Cold Dark Matter and Its Variants , 1997, astro-ph/9710252.

[64]  Astronomy,et al.  The statistics of lambda CDM Halo Concentrations , 2007, 0706.2919.

[65]  P. Peebles Principles of Physical Cosmology , 1993 .

[66]  G. Ferland,et al.  CLOUDY 90: Numerical Simulation of Plasmas and Their Spectra , 1998 .

[67]  J. Peacock,et al.  Simulations of the formation, evolution and clustering of galaxies and quasars , 2005, Nature.

[68]  U. Seljak,et al.  A Line of sight integration approach to cosmic microwave background anisotropies , 1996, astro-ph/9603033.