Hematopoietic stem-cell gene therapy is associated with restored white matter microvascular function in cerebral adrenoleukodystrophy

[1]  O. Abe,et al.  Clinical efficacy of haematopoietic stem cell transplantation for adult adrenoleukodystrophy , 2020, Brain communications.

[2]  F. Eichler,et al.  MRI brain lesions in asymptomatic boys with X-linked adrenoleukodystrophy , 2019, Neurology.

[3]  D. Nascene,et al.  Successful donor engraftment and repair of the blood-brain barrier in cerebral adrenoleukodystrophy. , 2019, Blood.

[4]  Myriam Peyrounette,et al.  Neutrophil adhesion in brain capillaries reduces cortical blood flow and impairs memory function in Alzheimer’s disease mouse models , 2018, Nature Neuroscience.

[5]  F. Eichler,et al.  ABCD1 dysfunction alters white matter microvascular perfusion , 2017, Brain : a journal of neurology.

[6]  David A. Williams,et al.  Hematopoietic Stem‐Cell Gene Therapy for Cerebral Adrenoleukodystrophy , 2017, The New England journal of medicine.

[7]  Kim Mouridsen,et al.  Reliable estimation of microvascular flow patterns in patients with disrupted blood–brain barrier using dynamic susceptibility contrast MRI , 2017, Journal of magnetic resonance imaging : JMRI.

[8]  Jeff E. Mold,et al.  The Lifespan and Turnover of Microglia in the Human Brain , 2017, Cell reports.

[9]  A. Bjørnerud,et al.  A theoretical framework for determining cerebral vascular function and heterogeneity from dynamic susceptibility contrast MRI , 2017, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[10]  G. Raymond,et al.  Childhood Cerebral Adrenoleukodystrophy: MR Perfusion Measurements and Their Use in Predicting Clinical Outcome after Hematopoietic Stem Cell Transplantation , 2016, American Journal of Neuroradiology.

[11]  A. Moser,et al.  Brain endothelial dysfunction in cerebral adrenoleukodystrophy. , 2015, Brain : a journal of neurology.

[12]  P. Aubourg Cerebral adrenoleukodystrophy: a demyelinating disease that leaves the door wide open. , 2015, Brain : a journal of neurology.

[13]  Kim Mouridsen,et al.  Reliable Estimation of Capillary Transit Time Distributions Using DSC-MRI , 2014, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[14]  Bruce R. Rosen,et al.  Vessel Architectural Imaging Identifies Cancer Patient Responders to Anti-angiogenic Therapy , 2013, Nature Medicine.

[15]  F. Eichler,et al.  Hypoperfusion predicts lesion progression in cerebral X-linked adrenoleukodystrophy. , 2012, Brain : a journal of neurology.

[16]  C. Di Serio,et al.  Brain conditioning is instrumental for successful microglia reconstitution following hematopoietic stem cell transplantation , 2012, Proceedings of the National Academy of Sciences.

[17]  Leif Østergaard,et al.  The roles of cerebral blood flow, capillary transit time heterogeneity, and oxygen tension in brain oxygenation and metabolism , 2011, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[18]  Kim Mouridsen,et al.  T1- and T*2-Dominant Extravasation Correction in DSC-MRI: Part I—Theoretical Considerations and Implications for Assessment of Tumor Hemodynamic Properties , 2011, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[19]  Gary King,et al.  MatchIt: Nonparametric Preprocessing for Parametric Causal Inference , 2011 .

[20]  A. Moser,et al.  Is microglial apoptosis an early pathogenic change in cerebral X‐linked adrenoleukodystrophy? , 2008, Annals of neurology.

[21]  J. Mandel,et al.  Adrénoleucodystrophie liée à l'X , 2007 .

[22]  H. Moser,et al.  Survival analysis of haematopoietic cell transplantation for childhood cerebral X-linked adrenoleukodystrophy: a comparison study , 2007, The Lancet Neurology.

[23]  Y. W. Chen,et al.  Progression of white matter lesions and hemorrhages in cerebral amyloid angiopathy , 2006, Neurology.

[24]  H. Moser,et al.  MRI and proton MRSI in women heterozygous for X-linked adrenoleukodystrophy , 2003, Neurology.

[25]  H. Moser,et al.  ABCD1 mutations and the X‐linked adrenoleukodystrophy mutation database: Role in diagnosis and clinical correlations , 2001, Human mutation.

[26]  R. Ito,et al.  Diffusion tensor brain MR imaging in X-linked cerebral adrenoleukodystrophy , 2001, Neurology.

[27]  H. Moser,et al.  X-Linked Adrenoleukodystrophy: Overview and Prognosis as a Function of Age and Brain Magnetic Resonance Imaging Abnormality. A Study Involving 372 Patients , 2000, Neuropediatrics.

[28]  E. Ralston,et al.  Expression of the Adrenoleukodystrophy Protein in the Human and Mouse Central Nervous System , 1997, Neurobiology of Disease.

[29]  Jean Mosser,et al.  Putative X-linked adrenoleukodystrophy gene shares unexpected homology with ABC transporters , 1993, Nature.

[30]  A. Pujol Novel Therapeutic Targets and Drug Candidates for Modifying Disease Progression in Adrenoleukodystrophy. , 2016, Endocrine development.

[31]  Gang Tao,et al.  A Comparison Study , 2003 .