Physical and Electrical Performance Limits of High-Speed SiGeC HBTs—Part I: Vertical Scaling

The overall purpose of this paper (including Part I, in this issue) is the prediction of the ultimate electrical high-frequency performance potential for SiGeC heterojunction bipolar transistors under the constraints of practical applications. This goal is achieved by utilizing most advanced device simulation tools with parameters calibrated to existing experimental results. This Part I outlines the overall scaling procedure and then focuses on the vertically scaled structure. According to isothermal device simulation, the “ultimate” doping profile yields a peak transit frequency fT of almost 1.5 THz, a BVCEO above 1 V (dependent on BE bias) and a zero-bias internal base sheet resistance of about 3 kΩ/sq. The reasons for achieving a higher product fTBVCEO(>; 1.5 THzV) than anticipated from the classical Johnson limit are explained. Finally, it is found that fT is limited by the minority charge stored in the BE junction and that BVCEO is mainly determined by the tunneling mechanisms in the base-collector space-charge region.

[1]  H. Berger Performance Limitations of Silicon Bipolar Transistors , 1979 .

[2]  Peter de Maagt,et al.  Terahertz Science, Engineering and Systems—from Space to Earth Applications , 2005 .

[3]  J D Cressler,et al.  Silicon-Germanium as an Enabling Technology for Extreme Environment Electronics , 2010, IEEE Transactions on Device and Materials Reliability.

[4]  D. Celi,et al.  A conventional double-polysilicon FSA-SEG Si/SiGe:C HBT reaching 400 GHz fMAX , 2009, 2009 IEEE Bipolar/BiCMOS Circuits and Technology Meeting.

[5]  N. Kukutsu,et al.  Toward practical applications over 100 GHz , 2010, 2010 IEEE MTT-S International Microwave Symposium.

[6]  Carver A. Mead,et al.  Limitations in microelectronics — II. Bipolar technology☆ , 1972 .

[7]  P. Chevalier,et al.  A Low-Voltage SiGe BiCMOS 77-GHz Automotive Radar Chipset , 2008, IEEE Transactions on Microwave Theory and Techniques.

[8]  C. Jungemann,et al.  A fully coupled scheme for a Boltzmann-Poisson equation solver based on a spherical harmonics expansion , 2009 .

[9]  Masayoshi Tonouchi,et al.  Cutting-edge terahertz technology , 2007 .

[10]  H. Irion,et al.  A 122 GHz SiGe active subharmonic mixer , 2005, European Gallium Arsenide and Other Semiconductor Application Symposium, GAAS 2005.

[11]  Bernd Heinemann,et al.  A 325 GHz frequency multiplier chain in a SiGe HBT technology , 2010, 2010 IEEE Radio Frequency Integrated Circuits Symposium.

[12]  C. Wipf,et al.  SiGe HBT technology with fT/fmax of 300GHz/500GHz and 2.0 ps CML gate delay , 2010, 2010 International Electron Devices Meeting.

[13]  P. K. Basu,et al.  Calculation of figures of merit of Si/Si1−x−yGexCy/Si HBTs and their optimization , 2001 .

[14]  P. Chevalier,et al.  Physical and Electrical Performance Limits of High-Speed Si GeC HBTs—Part II: Lateral Scaling , 2011, IEEE Transactions on Electron Devices.

[15]  C. Jungemann,et al.  Electron transport in extremely scaled SiGe HBTs , 2009, 2009 IEEE Bipolar/BiCMOS Circuits and Technology Meeting.

[16]  Jae-Sung Rieh,et al.  On the Performance Limits of Cryogenically Operated SiGe HBTs and Its Relation to Scaling for Terahertz Speeds , 2009, IEEE Transactions on Electron Devices.

[17]  Kwok K. Ng,et al.  Reevaluation of the ftBV/sub ceo/ limit on Si bipolar transistors , 1998 .

[18]  M. Schroter,et al.  TCAD simulation and development within the European DOTFIVE project on 500GHz SiGe:C HBT's , 2010, The 5th European Microwave Integrated Circuits Conference.

[19]  Guofu Niu,et al.  2-D analysis of device parasitics for 800/1000 GHz f/sub T//f/sub max/ SiGe HBT , 2005, Proceedings of the Bipolar/BiCMOS Circuits and Technology Meeting, 2005..

[20]  Hans-Martin Rein,et al.  Influence of impact-ionization-induced instabilities on the maximum usable output voltage of Si-bipolar transistors , 2001 .

[21]  P. Chevalier,et al.  Vertical profile optimization for +400 GHz fMAX Si/SiGe:C HBTs , 2010, 2010 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM).

[22]  D. Celi,et al.  Modeling and parameter extraction of SiGe: C HBT's with HICUM for the emerging terahertz era , 2010, The 5th European Microwave Integrated Circuits Conference.

[23]  P. Chevalier,et al.  Band-to-band tunneling in vertically scaled SiGe:C HBTs , 2006, IEEE Electron Device Letters.

[24]  P. Chevalier,et al.  80/160-GHz Transceiver and 140-GHz Amplifier in SiGe Technology , 2007, 2007 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium.

[25]  T. Adam,et al.  SiGe HBT technology with f/sub max//f/sub T/=350/300 GHz and gate delay below 3.3 ps , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[26]  Sorin P. Voinigescu,et al.  Will BiCMOS stay competitive for mmW applications ? , 2008, 2008 IEEE Custom Integrated Circuits Conference.

[27]  Yves Campidelli,et al.  Pushing conventional SiGe HBT technology towards "Dotfive" terahertz , 2010, The 5th European Microwave Integrated Circuits Conference.

[28]  D. Knoll,et al.  SiGe HBT module with 2.5 ps gate delay , 2008, 2008 IEEE International Electron Devices Meeting.

[29]  James F. Buckwalter,et al.  A 91 to 110-GHz tapered constructive wave power amplifier in a 0.12µm SiGe BiCMOS process , 2010, 2010 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM).

[30]  Y. Deval,et al.  A 125GHz LC-VCO in a SiGe:C Technology dedicated to mmW applications , 2010, 2010 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM).

[31]  M. Schroter,et al.  Hydrodynamic simulations for advanced SiGe HBTs , 2010, 2010 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM).

[32]  A. Lisauskas,et al.  Opportunities for silicon at mmWave and Terahertz frequencies , 2008, 2008 IEEE Bipolar/BiCMOS Circuits and Technology Meeting.

[33]  P. Chevalier,et al.  Advanced process modules and architectures for half-terahertz SiGe:C HBTs , 2009, 2009 IEEE Bipolar/BiCMOS Circuits and Technology Meeting.

[34]  Rudolf Lachner,et al.  Static frequency dividers up to 133GHz in SiGe:C bipolar technology , 2010, 2010 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM).

[35]  Tobias Ellermeyer,et al.  DA and AD converters in SiGe technology: Speed and resolution for ultra high data rate applications , 2010, 36th European Conference and Exhibition on Optical Communication.

[36]  H. J. Osten,et al.  Increasing process margin in SiGe heterojunction bipolar technology by adding carbon , 1999 .

[37]  C. Tavernier,et al.  Monte Carlo-Based Analytical Models for Electron and Hole Electrical Parameters in Strained SiGeC Alloys , 2009, 2009 International Conference on Simulation of Semiconductor Processes and Devices.

[38]  Ullrich R. Pfeiffer,et al.  A 160-GHz low-noise downconverter in a SiGe HBT technology , 2010, The 40th European Microwave Conference.

[39]  M. Moller Challenges in Cell-Based Design of Very-High-Speed Si-Bipolar IC's at 100 Gb/s , 2007, 2007 IEEE Bipolar/BiCMOS Circuits and Technology Meeting.

[40]  Christian Gontrand,et al.  First- and second-order electrical modelling and experiment on very high speed SiGeC heterojunction bipolar transistors , 2009 .

[41]  E. Johnson Physical limitations on frequency and power parameters of transistors , 1965 .

[42]  P. Garcia,et al.  Low Noise Low Cost Rx Solutions for Pulsed 24GHz Automotive Radar Sensors , 2007, 2007 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium.

[43]  Hans-Martin Rein,et al.  Physics- and process-based bipolar transistor modeling for integrated circuit design , 1999, IEEE J. Solid State Circuits.

[44]  Michael S. Shur,et al.  Terahertz science and technology for military and security applications , 2007 .

[45]  M. Schroter,et al.  On the Feasibility of 500 GHz Silicon-Germanium HBTs , 2009, 2009 International Conference on Simulation of Semiconductor Processes and Devices.

[46]  D. Klaassen,et al.  A new recombination model for device simulation including tunneling , 1992 .

[47]  Peter Ashburn,et al.  SiGeC HBTs: impact of C on device performance , 2006 .

[48]  G.M. Rebeiz,et al.  A Q-band phased-array front-end with integrated Wilkinson couplers for linear power combining in SiGe BiCMOS , 2008, 2008 IEEE Bipolar/BiCMOS Circuits and Technology Meeting.