Metal Nanocluster Composite Glasses

Publisher Summary This chapter is concerned with metal nanocluster composites formed by transition metal clusters embedded in silicate glasses, in which cluster concentration is below percolation limit (dispersed clusters); in particular, the systems are in the condition of quasi-static regime, where cluster radius is much smaller than the wavelength of the light used to probe its response and–most of all–the light used in a MNCG-based optoelectronic device. Composite materials formed by transition metal clusters embedded in glass matrices exhibit peculiar optical properties. The development of the cluster-matter field assumed a strong impact owing to the experimentalavailability of selected cluster beams and time-of-flight mass spectrometry techniques. In general, the problem of the modelization of the cluster behavior has followed either atomistic (bottom-up) approaches, which exploits ab initio techniques of the quantum chemistry, or top-down approaches, describing the cluster as a mesoscopic piece of bulk to be treated in the solid-state or statistical physics framework. This work gives particular emphasis to the third-order nonlinear optical properties, because their technological implications as well as their peculiarity in MNCGs deserve this detailed treatment. One of the greatest challenges for optics is the development of computer systems based on all-optical photonic switching devices replacing electronic ones, that is, with short time and energy consumption per switch.

[1]  J. Garnett,et al.  Colours in Metal Glasses and in Metallic Films , 1904 .

[2]  G. Battaglin Formation and chemical-physical characterization of metallic nanoclusters in ion-implanted silica , 1996 .

[3]  David E. Aspnes,et al.  Local‐field effects and effective‐medium theory: A microscopic perspective , 1982 .

[4]  G. Battaglin,et al.  Annealing behavior of silver, copper, and silver-copper nanoclusters in a silica matrix synthesized by the sol-gel technique , 1996 .

[5]  P. Townsend,et al.  Ion implantation into heated silica substrates , 1994 .

[6]  Ferrell,et al.  Optical properties of submicrometer-size silver needles. , 1988, Physical review. B, Condensed matter.

[7]  F. d’Acapito,et al.  Local atomic environment of Cu ions in ion-exchanged silicate glass waveguides: An x-ray absorption spectroscopy study , 1997 .

[8]  A. Smirl,et al.  Generation of a forward-traveling phase-conjugate wave in germanium , 1980 .

[9]  J. Biersack,et al.  A Monte Carlo computer program for the transport of energetic ions in amorphous targets , 1980 .

[10]  R. Alfano,et al.  Nonlinear optical properties of metal-quantum-dot composites synthesized by ion implantation , 1994 .

[11]  G. W. Arnold,et al.  Colloid formation in copper-implanted fused silica and silicate glasses , 1994 .

[12]  G. Battaglin,et al.  Non-linear glasses by metal cluster formation: synthesis and properties , 1996 .

[13]  Vollmer,et al.  Desorption stimulated by laser-induced surface-plasmon excitation. , 1988, Physical review letters.

[14]  R. Devine,et al.  Macroscopic and microscopic effects of radiation in amorphous SiO2 , 1994 .

[15]  Girard,et al.  Optical nonlinear response of small metal particles: A self-consistent calculation. , 1988, Physical review. B, Condensed matter.

[16]  G. W. Arnold,et al.  Aggregation and migration of ion‐implanted silver in lithia‐alumina‐silica glass , 1977 .

[17]  I. Tanahashi,et al.  Effects of heat treatment on Ag particle growth and optical properties in Ag/SiO_2 glass composite thin films , 1995 .

[18]  R. Greegor,et al.  Extended x-ray absorption fine structure determination of thermal disorder in Cu: Comparison of theory and experiment , 1979 .

[19]  Robert H. Doremus,et al.  Optical properties of nanosized gold particles , 1996 .

[20]  C. Estournès,et al.  Reduction of copper in soda-lime-silicate glass by hydrogen , 1994 .

[21]  P. Townsend,et al.  Colloid size distributions in ion implanted glass , 1993 .

[22]  H. Hofmeister,et al.  Microstructural investigation of colloidal silver embedded in glass , 1995 .

[23]  T. Akai,et al.  Preparation of Copper‐Ruby Glasses by Sputtering: The Effect of Atmosphere on the Growth of Copper Particles , 1996 .

[24]  A. Quaranta,et al.  High-energy ion-beam mixing: A new route to form metallic nanoclusters in a dielectric matrix , 1996 .

[25]  T. S. Anderson,et al.  Formation and optical properties of metal nanoclusters formed by sequential implantation of Cd and Ag in silica , 1997 .

[26]  J. Vitko,et al.  The reduction of iron in soda-lime-silicate glasses by reaction with hydrogen , 1982 .

[27]  J. Shelby,et al.  Hydrogen-induced formation of colloids of arsenic, antimony, and bismuth in oxide glasses , 1992 .

[28]  R. Zuhr,et al.  Picosecond nonlinear optical response of a Cu:silica nanocluster composite. , 1993, Optics letters.

[29]  A. Gabel,et al.  Efficient degenerate four‐wave mixing in an ion‐exchanged semiconductor‐doped glass waveguide , 1987 .

[30]  Satoshi Sasaki,et al.  Optical nonlinearities of Au/SiO2 composite thin films prepared by a sputtering method , 1996 .

[31]  R. Zuhr,et al.  Non-linear optical properties of nanometer dimension AgCu particles in silica formed by sequential ion implantation , 1994 .

[32]  U. Kreibig,et al.  Surface plasma resonances in small spherical silver and gold particles , 1970 .

[33]  G. W. Arnold,et al.  Chemical aspects in copper‐implanted fused silica and soda‐lime glasses , 1995 .

[34]  H. P. Girdlestone,et al.  Size‐dependent electroabsorptive properties of semiconductor microcrystallites in glass , 1990 .

[35]  P. F. Heidrich,et al.  Optical waveguide refractive index profiles determined from measurement of mode indices: a simple analysis. , 1976, Applied optics.

[36]  Fujimoto,et al.  Femtosecond studies of nonequilibrium electronic processes in metals. , 1987, Physical review letters.

[37]  William H. Dumbaugh,et al.  Nonlinear optical susceptibilities of high‐index glasses , 1989 .

[38]  B. Dobson,et al.  A structural basis for ionic diffusion in oxide glasses , 1991 .

[39]  Alp,et al.  Structure of copper microclusters isolated in solid argon. , 1986, Physical Review Letters.

[40]  M. Chou,et al.  Electronic Shell Structure and Metal Clusters , 1987 .

[41]  David A. B. Miller,et al.  Theory of the linear and nonlinear optical properties of semiconductor microcrystallites. , 1987, Physical review. B, Condensed matter.

[42]  Michael Vollmer,et al.  Optical properties of metal clusters , 1995 .

[43]  F. Gonella Stress-induced optical effects in Ag(+)-Na(+) ion-exchanged glass waveguides. , 1992, Optics letters.

[44]  Francesco Gonella,et al.  Characterization of Cu–Na ion‐exchanged glass waveguides , 1996 .

[45]  G. Battaglin,et al.  Spectroscopic investigation of silver in soda-lime glass , 1998 .

[46]  Mansoor Sheik-Bahae,et al.  Time-resolved Z-scan measurements of optical nonlinearities , 1994 .

[47]  Stephan W Koch,et al.  Photon echo and exchange effects in quantum-confined semiconductors , 1993 .

[48]  P. Townsend,et al.  Gallium colloid formation during ion implantation of glass , 1995 .

[49]  Walt A. de Heer,et al.  The physics of simple metal clusters: experimental aspects and simple models , 1993 .

[50]  H. Hosono,et al.  Coalescence of nanosized copper colloid particles formed in Cu‐implanted SiO2 glass by implantation of fluorine ions: Formation of violet copper colloids , 1992 .

[51]  J. M. Ballesteros,et al.  Pulsed laser deposition of Cu:Al2O3 nanocrystal thin films with high third-order optical susceptibility , 1997 .

[52]  Manfred Dubiel Mosel Extended X-Ray Absorption Fine Structure Investigations at the Silver K-Edge of Ion Exchanged Sodium Silicate Glasses , 1994 .

[53]  A. Berger Concentration and size depth profile of colloidal silver particles in glass surfaces produced by sodium-silver ion-exchange , 1992 .

[54]  H. Hosono,et al.  Formation of nanoscale phosphorus colloids in implanted SiO2 glass , 1992 .

[55]  Roger Kelly,et al.  Laser irradiation effects in Si+-implanted SiO2 , 1992 .

[56]  J. Garnett,et al.  Colours in Metal Glasses, in Metallic Films, and in Metallic Solutions. II , 1906 .

[57]  Marcus,et al.  Structure and vibrations of chemically produced Au55 clusters. , 1990, Physical review. B, Condensed matter.

[58]  T. S. Anderson,et al.  Formation and optical characterization of multi-component Ag−Sb nanometer dimension colloids formed by sequential ion implantation in silica , 1996 .

[59]  F. d’Acapito,et al.  EXAFS study on Ag-doped silicate glasses irradiated with low-mass ions , 1996 .

[60]  A. Stella,et al.  BREWSTER ANGLE TECHNIQUE TO STUDY METAL NANOPARTICLE DISTRIBUTIONS IN DIELECTRIC MATRICES , 1996 .

[61]  H. Hosono,et al.  Structural factor controlling nanasize copper formation in doped amorphous silica by ion implantation , 1994 .

[62]  F. Xu,et al.  Preparation of Fe nanocrystalline in SiO2 by ion implantation , 1992 .

[63]  F. Toigo,et al.  Radiation enhanced diffusion in glasses , 1988 .

[64]  Stroud,et al.  Nonlinear susceptibilities of granular matter. , 1988, Physical review. B, Condensed matter.

[65]  G. Battaglin,et al.  Silver nanoclusters formation in ion-exchanged waveguides by annealing in hydrogen atmosphere , 1996 .

[66]  J. Creighton,et al.  Ultraviolet–visible absorption spectra of the colloidal metallic elements , 1991 .

[67]  R. Zuhr,et al.  Optical spectra of Pb implanted fused silica , 1993 .

[68]  K. Kadono,et al.  Preparation of Copper-Ruby Glasses by Sputtering and Their Optical Properties , 1993 .

[69]  H. Bertagnolli,et al.  Experimental studies investigating the structure of soda-lime glasses after silver-sodium ion exchange , 1997 .

[70]  Paolo Mazzoldi,et al.  Irradiation-induced Ag-colloid formation in ion-exchanged soda-lime glass , 1995 .

[71]  H. Hosono,et al.  Probing interface properties of nanocomposites by third-order nonlinear optics , 1996 .

[72]  Z. Xiang,et al.  The optical spectra of copper ions in alkali-lime-silica glasses , 1992 .

[73]  S. Thiel,et al.  Synthesis of nanosized silver particles in ion-exchanged glass by electron beam irradiation , 1997 .

[74]  R. Bertoncello,et al.  Chemical interactions in titanium- and tungsten-implanted fused silica , 1993 .

[75]  E. Vogel Glasses as Nonlinear Photonic Materials , 1989 .

[76]  G. W. Arnold Near‐surface nucleation and crystallization of an ion‐implanted lithia‐alumina‐silica glass , 1975 .

[77]  R. Weller,et al.  Nonlinear index of refraction of Cu- and Pb-implanted fused silica , 1992 .

[78]  H. Hosono Simple Criterion on Colloid Formation in SiO2 Glasses by Ion Implantation , 1993 .

[79]  R. Bertoncello,et al.  On the formation of silicon oxynitride by ion implantation in fused silica , 1990 .

[80]  Haberland,et al.  New spectroscopic tool for cluster science: Nonexponential laser fluence dependence of photofragmentation. , 1996, Physical review letters.

[81]  T. Isobe,et al.  The optical and magnetic properties of Ni+-implanted silica , 1995 .

[82]  Robert R. Alfano,et al.  Optical properties of gold nanocluster composites formed by deep ion implantation in silica , 1993 .

[83]  H. Hosono,et al.  Large third‐order optical nonlinearity of nanometer‐sized amorphous semiconductor: Phosphorous colloids formed in SiO2 glass by ion implantation , 1992 .

[84]  B. Champagnon,et al.  Vibration eigenmodes and size of microcrystallites in glass: Observation by very-low-frequency Raman scattering. , 1986, Physical review letters.

[85]  M. Nogami,et al.  Cu microcrystals in sol-gel derived glasses , 1995 .

[86]  Santucci,et al.  Extended x-ray-absorption fine-structure and near-edge-structure studies on evaporated small clusters of Au. , 1985, Physical review. B, Condensed matter.

[87]  J. Borders,et al.  Ion implantation as an ultrafast quenching technique for metastable alloy production: The Ag‐Cu system , 1977 .

[88]  Formation and optical characterization of nanometer dimension colloids in silica formed by sequentially implanting In and Ag , 1995 .

[89]  Hosono Importance of implantation sequence in the formation of nanometer size colloid particles embedded in amorphous SiO2: Formation of composite colloids with Cu core and a Cu2O shell by coimplantation of Cu and F. , 1995, Physical review letters.

[90]  EXAFS study on metal cluster doped silica glass obtained by ion implantation procedures , 1998 .

[91]  Kohei Kadono,et al.  GOLD NANOPARTICLES ION IMPLANTED IN GLASS WITH ENHANCED NONLINEAR OPTICAL PROPERTIES , 1994 .

[92]  C. Bowden,et al.  Optical bistability in small metallic particle composites , 1989 .

[93]  W. Halperin,et al.  Quantum size effects in metal particles , 1986 .

[94]  Richard F. Haglund,et al.  Physical and optical properties of Cu nanoclusters fabricated by ion implantation in fused silica , 1994 .

[95]  T. Kurauchi,et al.  Nonlinear optical properties of Sn+ ion-implanted silica glass , 1994 .

[96]  P. Tien Integrated optics and new wave phenomena in optical waveguides , 1977 .

[97]  N. Kitazawa,et al.  Effect of Na2O Addition to Ag2O-Doped Phosphate Glasses on Enhancement of Silver Particle Precipitation by Low-Energy Ion Irradiation , 1996 .

[98]  Michael D. Perry,et al.  Interaction of intense laser pulses with atomic clusters. , 1996 .

[99]  H. Hosono,et al.  Colloid formation effects on depth profile of implanted Ag in SiO2 glass , 1993 .

[100]  A. Ikushima,et al.  Optical nonlinearities of a high concentration of small metal particles dispersed in glass: copper and silver particles , 1994 .

[101]  Francesco Gonella,et al.  Detection and size determination of Ag nanoclusters in ion‐exchanged soda‐lime glasses by waveguided Raman spectroscopy , 1996 .

[102]  G. W. Arnold,et al.  Interaction of high‐power laser light with silver nanocluster composite glasses , 1996 .

[103]  Robert R. Alfano,et al.  Size dependence of the third-order susceptibility of copper nanoclusters investigated by four-wave mixing , 1994 .

[104]  J. Shelby Reaction of hydrogen with hydroxyl‐free vitreous silica , 1980 .

[105]  Francesco Gonella,et al.  Experimental study of copper–alkali ion exchange in glass , 1998 .

[106]  François Hache,et al.  The optical kerr effect in small metal particles and metal colloids: The case of gold , 1988 .

[107]  Michel Prassas,et al.  Mathematical modeling of spectral selective absorption and reflection of light by metal-dielectric composites , 1997 .

[108]  Paolo Mazzoldi,et al.  Defect diffusion in ion implanted glasses , 1992 .

[109]  S. Shi Molecular structures, macroscopic nonlinear optical effects, and photonic devices , 1994 .

[110]  R. Broglia The colour of metal clusters and of atomic nuclei , 1994 .

[111]  Saibal Roy,et al.  The development of nanosize silver particles in an ion exchanged silicate glass matrix , 1997 .

[112]  E. W. Stryland,et al.  Measurement of nondegenerate nonlinearities using a two-color Z scan. , 1992, Optics letters.

[113]  C. Afonso,et al.  Annealing of ion implanted silver colloids in glass , 1993 .

[114]  N. Borrelli,et al.  Resonant and non-resonant effects in photonic glasses , 1995 .

[115]  R. Bertoncello,et al.  High fluence implantation in glasses: chemical interactions , 1992 .

[116]  G. Wertheim,et al.  Noble- and transition-metal clusters: The d bands of silver and palladium. , 1986, Physical review. B, Condensed matter.

[117]  N. Itoh,et al.  Laser‐induced reemission of silicon atoms implanted into quartz , 1988 .

[118]  Hideo Hosono,et al.  Cross-sectional TEM observation of copper-implanted SiO2 glass , 1992 .