Bigraphical Languages and their Simulation

AbstractWe study bigraphs as a foundation for practical formal languages and the problem of simu-lating such bigraphical languages. The theory of bigraphs is a foundational, graphical model ofconcurrent systems focusing on mobility and connectivity. It is a meta-model in the sense thatit is parametrized over a signature and a set of reaction rules which determine the syntax anddynamic semantics, respectively. This allows for rather direct models and, together with a nat-ural yet formal graphical notation and an elegant theory of behavioral equivalence, this makesbigraphsanenticingfoundationforpracticalformallanguages. However,thetheoryofbigraphsisstillyoung. Whiledirectmodelsofmanyprocesscalculihavebeenconstructed,itisunclearhowsuitablebigraphsareformorepracticalformallanguages. Also,thegeneralityofbigraphscomesatapriceofcomplexityinthetheoryandsimulationofbigraphicalmodelsisnon-trivial. Akeyproblem is that of matching: deciding if and how a reaction rule applies to a bigraph. In thisdissertation, westudybigraphs and their simulation for two types of practicalformal languages:programminglanguagesandlanguagesforcellbiology.First, we study programming languages and binding bigraphs, a variant of bigraphs with afacilityformodelingthebindersfoundinmostprogramminglanguages. Buildingonanexistingtermlanguageandinductivecharacterizationofmatchingweconstructaprovablycorrectmatch-ing algorithm. We implement the term language and matching algorithm resulting in the BPLTool,afirsttoolforbindingbigraphs,whichprovidesfacilitiesformodeling,simulation,andvisu-alization. WethenemploybindingbigraphsandtheBPLTooltoformalizeasubsetofWS-BPEL,a commercial programming language for implementing business processes. We also propose andformalize an extension to WS-BPEL which supports mobile processes and process management.Whiledemonstratingthefeasibilityofusingbigraphsasafoundationforprogramminglanguages,our work reveals an inconvenience in the formulation of binding bigraphs, exposes the need forhigher-order reaction rules, data types and (practical) sortings, and demonstrates that the BPLToolistooinefficientforsimulatingsuchalanguage. Finally,asanaside,weidentifyacoresubsetof WS-BPEL and construct an idempotent transformation from WS-BPEL into the core subset,therebyshowingthataformalizationneedonlycoverthecoresubsettobecomplete.Next, we study languages for cell biology and stochastic bigraphs, an extension to bigraphsthat enables modeling and analysis of stochastic behavior which is useful in cell biology. Wegeneralizeanefficientandscalablestochasticsimulationalgorithmforthe -calculustobigraphs.For this purpose, we develop a number of theories for (stochastic) bigraphs: (i) a formulationof the theory that is amenable to implementation, (ii) embeddings, an alternative formulationof matches suitable for implementation, (iii) edit scripts, an alternative to reaction rules witha natural and fine-grained notion of modification, (iv) anchored matching, a localized matchingalgorithm,and(v)anotionandanalysisofcausalityatthelevelofrules. Parts(i)-(iii)havebeendevelopedinfullwhileparts(iv)-(v)areoutlinedindetail. Parts(i)-(iv)havebeenimplementedin a prototype. Finally, we develop a bigraphical language for protein-protein interaction withdynamiccompartments. Ourapproachdiffersfromsimilarpreviousworksinanumberofrespects.First,weelidethebigraphicalunderpinningstoobtainasimplerandmoreaccessiblepresentationin the style of process calculi. In particular, the development is incremental, adding only thecomplexity necessary for each feature. Second, we give a graphical notation which correspondsto a subset of bigraphs but is more suitable for the domain. Third, our approach includes anovel mechanism for handling connected components, which is necessary to model diffusion ofe.g.,protein-complexes. Ourworksuggeststhattworefinementsofstochasticbigraphswouldbeconvenient: connectedcomponentsshouldbeeasilyidentifiable,andmatchingshouldberestrictedtocertainlocalcontexts.i

[1]  Lars Birkedal,et al.  An Implementation of Bigraph Matching , 2008 .

[2]  Roozbeh Farahbod,et al.  An Abstract Machine Architecture for Web Service Based Business Process Management , 2005, Business Process Management Workshops.

[3]  Roozbeh Farahbod,et al.  Specification and Validation of the Business Process Execution Language for Web Services , 2004, Abstract State Machines.

[4]  Muffy Calder,et al.  A SAT based algorithm for the matching problem in bigraphs with sharing , 2010 .

[5]  Robin Milner,et al.  Bigraphs and mobile processes (revised) , 2004 .

[6]  Wolfgang Reisig,et al.  ASM-based Semantics for BPEL: The Negative Control Flow , 2005, Abstract State Machines.

[7]  Robin Milner Embeddings and Contexts for Link Graphs , 2005, Formal Methods in Software and Systems Modeling.

[8]  Aviv Regev,et al.  Representation and Simulation of Biochemical Processes Using the pi-Calculus Process Algebra , 2000, Pacific Symposium on Biocomputing.

[9]  Hartmut Ehrig,et al.  Bigraphs meet Double Pushouts , 2002, Bull. EATCS.

[10]  S. Debois Computation in the Informatic Jungle , 2011 .

[11]  Arne John Glenstrup,et al.  Formalizing WS-BPEL and Higher Order Mobile Em- bedded Business Processes in the Bigraphical Program- ming Languages (BPL) Tool , 2008 .

[12]  Robin Milner,et al.  An inductive characterization of matching in binding bigraphs , 2013, Formal Aspects of Computing.

[13]  Luca Cardelli,et al.  Efficient, Correct Simulation of Biological Processes in the Stochastic Pi-calculus , 2007, CMSB.

[14]  Corrado Priami,et al.  Beta Binders for Biological Interactions , 2004, CMSB.

[15]  Luca Cardelli,et al.  Mobile Ambients , 1998, FoSSaCS.

[16]  Paolo Milazzo,et al.  A Calculus of Looping Sequences for Modelling Microbiological Systems , 2006, Fundam. Informaticae.

[17]  Francesco Tiezzi,et al.  A WSDL-Based Type System for WS-BPEL , 2006, COORDINATION.

[18]  Robin Milner,et al.  A Calculus of Mobile Processes, II , 1992, Inf. Comput..

[19]  Luca Cardelli,et al.  BioAmbients: an abstraction for biological compartments , 2004, Theor. Comput. Sci..

[20]  Vincent Danos,et al.  Scalable Simulation of Cellular Signaling Networks , 2007, APLAS.

[21]  François Fages,et al.  Symbolic Model Checking of Biochemical Networks , 2003, CMSB.

[22]  Thomas T. Hildebrandt,et al.  Extending Howe's Method to Early Bisimulations for Typed Mobile Embedded Resources with Local Names , 2005, FSTTCS.

[23]  S. Griffis EDITOR , 1997, Journal of Navigation.

[24]  Vincent Danos,et al.  Abstracting the differential semantics of rule-based models: exact and automated model reduction , 2010 .

[25]  Robin Milner,et al.  Contexts and embeddings for closed shallow action graphs , 2000 .

[26]  Vincent Danos,et al.  Projective Brane Calculus , 2004, CMSB.

[27]  Robin Milner,et al.  Axioms for bigraphical structure , 2005, Mathematical Structures in Computer Science.

[28]  Giorgio Bacci,et al.  A framework for protein and membrane interactions , 2009, MeCBIC.

[29]  Luca Cardelli,et al.  Bitonal membrane systems: Interactions of biological membranes , 2008, Theor. Comput. Sci..

[30]  Nobuko Yoshida,et al.  Two Session Typing Systems for Higher-Order Mobile Processes , 2007, TLCA.

[31]  Mathias Weske,et al.  Using the pi-Calculus for Formalizing Workflow Patterns , 2005, Business Process Management.

[32]  Jan Vitek,et al.  The Seal Calculus , 2005, Inf. Comput..

[33]  Martin Olsen,et al.  Formalising Business Process Execution with Bigraphs and Reactive XML , 2006, COORDINATION.

[34]  Gheorghe Paun,et al.  Membrane Computing as a Modeling Framework. Cellular Systems Case Studies , 2008, SFM.

[35]  Walter Fontana Systems biology, models, and concurrency , 2008, POPL '08.

[36]  Carsten Schürmann,et al.  Celf - A Logical Framework for Deductive and Concurrent Systems (System Description) , 2008, IJCAR.

[37]  Jean Krivine,et al.  A Generic Language for Biological Systems based on Bigraphs , 2008 .

[38]  William S. Hlavacek,et al.  Rule-based modeling of biochemical networks , 2005, Complex..

[39]  Lars Birkedal,et al.  Axiomatizing Binding Bigraphs , 2006, Nord. J. Comput..

[40]  Martin Olsen,et al.  Distributed Reactive XML , 2006, MTCoord@COORDINATION.

[41]  Corrado Priami,et al.  Stochastic pi-Calculus , 1995, Comput. J..

[42]  Niels Lohmann,et al.  A Feature-Complete Petri Net Semantics for WS-BPEL 2.0 , 2007, WS-FM.

[43]  Christian Stahl,et al.  A Petri Net Semantics for BPEL , 2005 .

[44]  Giorgio Bacci,et al.  DBtk: A Toolkit for Directed Bigraphs , 2009, CALCO.

[45]  Jane Hillston,et al.  A compositional approach to performance modelling , 1996 .

[46]  Robin Milner,et al.  The Space and Motion of Communicating Agents , 2009 .

[47]  D. Gillespie A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions , 1976 .

[48]  Thomas T. Hildebrandt,et al.  Bigraphical Semantics of Higher-Order Mobile Embedded Resources with Local Names , 2006, GT-VC@CONCUR.

[49]  Cosimo Laneve,et al.  Core Formal Molecular Biology , 2003, ESOP.

[50]  Thomas T. Hildebrandt,et al.  Modelling the Security of Smart Cards by Hard and Soft Types for Higher-Order Mobile Embedded Resources , 2007, Electron. Notes Theor. Comput. Sci..

[51]  D. Gillespie Exact Stochastic Simulation of Coupled Chemical Reactions , 1977 .

[52]  Robin Milner,et al.  Stochastic Bigraphs , 2008, MFPS.

[53]  Vincent Danos,et al.  A Language for the Cell , 2008 .

[54]  Mariangiola Dezani-Ciancaglini,et al.  BASS: boxed ambients with safe sessions , 2006, PPDP '06.

[55]  Marta Z. Kwiatkowska,et al.  PRISM 4.0: Verification of Probabilistic Real-Time Systems , 2011, CAV.

[56]  Philip Bille,et al.  A survey on tree edit distance and related problems , 2005, Theor. Comput. Sci..

[57]  van der Wmp Wil Aalst,et al.  Workflow control-flow patterns : a revised view , 2006 .

[58]  Joachim Niehren,et al.  Biochemical Reaction Rules with Constraints , 2011, ESOP.

[59]  Robin Milner,et al.  Matching of Bigraphs , 2007, GT-VC@CONCUR.

[60]  Dirk Fahland Complete Abstract Operational Semantics for the Web Service Business Process Execution Language , 2005 .

[61]  Hélène Kirchner,et al.  Graph Rewriting and Strategies for Modeling Biochemical Networks , 2007, Ninth International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC 2007).

[62]  Mathias Weske,et al.  Efficient Analysis of BPEL 2.0 Processes Using p-Calculus , 2007 .

[63]  Nobuko Yoshida,et al.  Structured Communication-Centred Programming for Web Services , 2007, ESOP.

[64]  Robin Milner,et al.  Transition systems, link graphs and Petri nets , 2006, Mathematical Structures in Computer Science.

[65]  Kathrin Hoffmann,et al.  Algebraic Higher-Order Nets: Graphs and Petri Nets as Tokens , 2002, WADT.

[66]  Cosimo Laneve,et al.  Formal molecular biology , 2004, Theor. Comput. Sci..

[67]  Thomas T. Hildebrandt,et al.  Bisimulation Congruences for Homer a calculus of Higher-order mobile embedded resources , 2004 .

[68]  Cosimo Laneve,et al.  Graphs for Core Molecular Biology , 2003, CMSB.

[69]  Thomas T. Hildebrandt,et al.  Formalizing Higher-Order Mobile Embedded Business Processes with Binding Bigraphs , 2008, COORDINATION.

[70]  Davide Sangiorgi,et al.  Mobile safe ambients , 2003, TOPL.

[71]  Giorgio Bacci,et al.  Bigraphical models for protein and membrane interactions , 2009, MeCBIC.

[72]  Mario Bravetti,et al.  Contract based multi-party service composition , 2007, FSEN'07.