Structured backward error analysis of linearized structured polynomial eigenvalue problems

We introduce a new class of structured matrix polynomials, namely, the class of M_A-structured matrix polynomials, to provide a common framework for many classes of structured matrix polynomials that are important in applications: the classes of (skew-)symmetric, (anti-)palindromic, and alternating matrix polynomials. Then, we introduce the families of M_A-structured strong block minimal bases pencils and of M_A-structured block Kronecker pencils,, and show that any M_A-structured odd-degree matrix polynomial can be strongly linearized via an M_A-structured block Kronecker pencil. Finally, for the classes of (skew-)symmetric, (anti-)palindromic, and alternating odd-degree matrix polynomials, the M_A-structured framework allows us to perform a global and structured backward stability analysis of complete structured polynomial eigenproblems, regular or singular, solved by applying to an M_A-structured block Kronecker pencil a structurally backward stable algorithm that computes its complete eigenstructure, like the palindromic-QR algorithm or the structured versions of the staircase algorithm. This analysis allows us to identify those M_A-structured block Kronecker pencils that yield a computed complete eigenstructure which is the exact one of a slightly perturbed structured matrix polynomial.These pencils include (modulo permutations) the well-known block-tridiagonal and block-antitridiagonal structure-preserving linearizations. Our analysis incorporates structure to the recent (unstructured) backward error analysis performed for block Kronecker linearizations by Dopico, Lawrence, Perez and Van Dooren, and share with it its key features, namely, it is a rigorous analysis valid for finite perturbations, i.e., it is not a first order analysis, it provides precise bounds, and it is valid simultaneously for a large class of structure-preserving strong linearizations.

[1]  Paul Van Dooren,et al.  Matrix Polynomials with Completely Prescribed Eigenstructure , 2015, SIAM J. Matrix Anal. Appl..

[2]  Volker Mehrmann,et al.  A STRUCTURED STAIRCASE ALGORITHM FOR SKEW-SYMMETRIC / SYMMETRIC , 2005 .

[3]  Javier Pérez,et al.  Constructing Strong Linearizations of Matrix Polynomials Expressed in Chebyshev Bases , 2017, SIAM J. Matrix Anal. Appl..

[4]  Nicholas J. Higham,et al.  Definite Matrix Polynomials and their Linearization by Definite Pencils , 2009, SIAM J. Matrix Anal. Appl..

[5]  Françoise Tisseur,et al.  Hermitian matrix polynomials with real eigenvalues of definite type. Part I: Classification☆ , 2012 .

[6]  Volker Mehrmann,et al.  Skew-symmetric matrix polynomials and their Smith forms , 2013 .

[7]  Nikta Shayanfar,et al.  Symmetric and skew-symmetric block-Kronecker linearizations , 2016, 1606.01766.

[8]  Peter Lancaster,et al.  Lambda-matrices and vibrating systems , 2002 .

[9]  C. Schröder URV decomposition based structured methods for palindromic and even eigenvalue problems , 2007 .

[10]  Christian Schroder,et al.  Dissipativity Enforcement via Perturbation of Para-Hermitian Pencils , 2013, IEEE Transactions on Circuits and Systems I: Regular Papers.

[11]  Jr. G. Forney,et al.  Minimal Bases of Rational Vector Spaces, with Applications to Multivariable Linear Systems , 1975 .

[12]  D. Kressner,et al.  Numerical Algebra, Matrix Theory, Differential-Algebraic Equations and Control Theory , 2015 .

[13]  R. Duffin The Rayleigh-Ritz method for dissipative or gyroscopic systems , 1960 .

[14]  S. Furtado,et al.  Structured strong linearizations from Fiedler pencils with repetition II , 2014 .

[15]  Sk. Safique Ahmad Perturbation analysis for complex symmetric, skew symmetric, even and odd matrix polynomials , 2011 .

[16]  Vanni Noferini,et al.  The behaviour of the complete eigenstructure of a polynomial matrix under a generic rational transformation , 2011, 1111.4004.

[17]  Volker Mehrmann,et al.  Smith Forms of Palindromic Matrix Polynomials , 2011 .

[18]  Volker Mehrmann,et al.  ON THE SOLUTION OF PALINDROMIC EIGENVALUE PROBLEMS , 2004 .

[19]  R. Byers,et al.  Symplectic, BVD, and Palindromic Approaches to Discrete-Time Control Problems , 2008 .

[20]  J. William Ahwood,et al.  CLASSIFICATION , 1931, Foundations of Familiar Language.

[21]  Punit Sharma,et al.  Structured Eigenvalue Backward Errors of Matrix Pencils and Polynomials with Palindromic Structures , 2015, SIAM J. Matrix Anal. Appl..

[22]  Karl Meerbergen,et al.  The Quadratic Eigenvalue Problem , 2001, SIAM Rev..

[23]  Volker Mehrmann,et al.  Vector Spaces of Linearizations for Matrix Polynomials , 2006, SIAM J. Matrix Anal. Appl..

[24]  P. Lancaster Strongly stable gyroscopic systems , 1999 .

[25]  Sabine Zaglmayr,et al.  Eigenvalue problems in SAW-filter simulations. , 2002 .

[26]  Froilán M. Dopico,et al.  Spectral equivalence of matrix polynomials and the index sum theorem , 2014 .

[27]  Paul Van Dooren,et al.  A Framework for Structured Linearizations of Matrix Polynomials in Various Bases , 2016, SIAM J. Matrix Anal. Appl..

[28]  P. Dooren The Computation of Kronecker's Canonical Form of a Singular Pencil , 1979 .

[29]  G. M. L. Gladwell,et al.  Inverse Problems in Vibration , 1986 .

[30]  U. Langer,et al.  Finite-element simulation of wave propagation in periodic piezoelectric SAW structures , 2006, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[31]  Froilán M. Dopico,et al.  Fiedler Companion Linearizations and the Recovery of Minimal Indices , 2010, SIAM J. Matrix Anal. Appl..

[32]  Shreemayee Bora,et al.  Structured Eigenvalue Condition Number and Backward Error of a Class of Polynomial Eigenvalue Problems Structured Eigenvalue Condition Number and Backward Error of a Class of Polynomial Eigenvalue Problems , 2022 .

[33]  Volker Mehrmann,et al.  Structure-Preserving Methods for Computing Eigenpairs of Large Sparse Skew-Hamiltonian/Hamiltonian Pencils , 2001, SIAM J. Sci. Comput..

[34]  Paul M. Terwilliger,et al.  The A-like matrices for a hypercube , 2010, 1010.2606.

[35]  V. Mehrmann,et al.  An implicitly-restarted Krylov subspace method for real symmetric/skew-symmetric eigenproblems , 2012 .

[36]  Punit Sharma,et al.  Structured Eigenvalue Backward Errors of Matrix Pencils and Polynomials with Hermitian and Related Structures , 2014, SIAM J. Matrix Anal. Appl..

[37]  Doktor der Naturwissenschaften Palindromic and Even Eigenvalue Problems - Analysis and Numerical Methods , 2008 .

[38]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[39]  S. Vologiannidis,et al.  Linearizations of Polynomial Matrices with Symmetries and Their Applications. , 2005, Proceedings of the 2005 IEEE International Symposium on, Mediterrean Conference on Control and Automation Intelligent Control, 2005..

[40]  Volker Mehrmann,et al.  Structured Polynomial Eigenvalue Problems: Good Vibrations from Good Linearizations , 2006, SIAM J. Matrix Anal. Appl..

[41]  Vanni Noferini,et al.  Chebyshev-Fiedler pencils , 2015 .

[42]  Paul Van Dooren,et al.  Block Kronecker linearizations of matrix polynomials and their backward errors , 2017, Numerische Mathematik.

[43]  Christian Mehl,et al.  Jacobi-like Algorithms for the Indefinite Generalized Hermitian Eigenvalue Problem , 2004, SIAM J. Matrix Anal. Appl..

[44]  F. R. Gantmakher The Theory of Matrices , 1984 .

[45]  S. Furtado,et al.  Structured strong linearizations from Fiedler pencils with repetition I , 2014 .

[46]  Roger A. Horn,et al.  A real-coninvolutory analog of the polar decomposition , 1993 .

[47]  Froilán M. Dopico,et al.  Linearizations of Hermitian Matrix Polynomials Preserving the Sign Characteristic , 2015, SIAM J. Matrix Anal. Appl..

[48]  Froilán M. Dopico,et al.  Palindromic companion forms for matrix polynomials of odd degree , 2011, J. Comput. Appl. Math..

[49]  Andrii Dmytryshyn,et al.  Structure preserving stratification of skew-symmetric matrix polynomials , 2017 .

[50]  David S. Watkins,et al.  Structured eigenvalue methods for the computation of corner singularities in 3D anisotropic elastic structures , 2001 .

[51]  Volker Mehrmann,et al.  Numerical methods for palindromic eigenvalue problems: Computing the anti‐triangular Schur form , 2009, Numer. Linear Algebra Appl..

[52]  Volker Mehrmann,et al.  Jordan structures of alternating matrix polynomials , 2010 .

[53]  P. Dooren,et al.  The eigenstructure of an arbitrary polynomial matrix : Computational aspects , 1983 .

[54]  Paul Van Dooren,et al.  Polynomial Zigzag Matrices, Dual Minimal Bases, and the Realization of Completely Singular Polynomials , 2016 .

[55]  Nicholas J. Higham,et al.  Symmetric Linearizations for Matrix Polynomials , 2006, SIAM J. Matrix Anal. Appl..

[56]  R. Alam,et al.  On backward errors of structured polynomial eigenproblems solved by structure preserving linearizations , 2009, 0907.2545.

[57]  Alex Townsend,et al.  Vector Spaces of Linearizations for Matrix Polynomials: A Bivariate Polynomial Approach , 2016, SIAM J. Matrix Anal. Appl..

[58]  Vanni Noferini,et al.  Fiedler-comrade and Fiedler-Chebyshev pencils , 2016, SIAM J. Matrix Anal. Appl..

[59]  Tiexiang Li,et al.  The palindromic generalized eigenvalue problem A∗x=λAx: Numerical solution and applications , 2011 .

[60]  Froilán M. Dopico,et al.  Large vector spaces of block-symmetric strong linearizations of matrix polynomials , 2015 .

[61]  Froilán M. Dopico,et al.  Block minimal bases ℓ-ifications of matrix polynomials , 2018, Linear Algebra and its Applications.

[62]  S. Liberty,et al.  Linear Systems , 2010, Scientific Parallel Computing.

[63]  G. Stewart On the Sensitivity of the Eigenvalue Problem $Ax = \lambda Bx$ , 1972 .

[64]  V. Mehrmann,et al.  Nonlinear eigenvalue problems: a challenge for modern eigenvalue methods , 2004 .

[65]  V. Mehrmann,et al.  Möbius transformations of matrix polynomials , 2015 .

[66]  Daniel Kressner,et al.  Implicit QR algorithms for palindromic and even eigenvalue problems , 2009, Numerical Algorithms.

[67]  G. Stewart,et al.  An Algorithm for Generalized Matrix Eigenvalue Problems. , 1973 .

[68]  S. Furtado,et al.  Palindromic linearizations of a matrix polynomial of odd degreee obtained from Fiedler pencils with repetition , 2012 .

[69]  W. Wolovich State-space and multivariable theory , 1972 .

[70]  Froil'an M. Dopico,et al.  A unified approach to Fiedler-like pencils via strong block minimal bases pencils , 2016, 1611.07170.

[71]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[72]  Yeong-Bin Yang,et al.  Three-Dimensional Analysis of Train-Rail-Bridge Interaction Problems , 2001 .

[73]  Wen-Wei Lin,et al.  Palindromic quadratization and structure-preserving algorithm for palindromic matrix polynomials of even degree , 2011, Numerische Mathematik.

[74]  Bibhas Adhikari,et al.  Backward errors and linearizations for palindromic matrix polynomials , 2008, 0812.4154.

[75]  C. Loan The ubiquitous Kronecker product , 2000 .

[76]  Rudolf A. Römer,et al.  The Anderson Model of Localization: A Challenge for Modern Eigenvalue Methods , 1999, SIAM J. Sci. Comput..

[77]  F. M. Dopico,et al.  LINEARIZATIONS OF SINGULAR MATRIX POLYNOMIALS AND THE RECOVERY OF MINIMAL INDICES , 2009 .