Structured backward error analysis of linearized structured polynomial eigenvalue problems
暂无分享,去创建一个
[1] Paul Van Dooren,et al. Matrix Polynomials with Completely Prescribed Eigenstructure , 2015, SIAM J. Matrix Anal. Appl..
[2] Volker Mehrmann,et al. A STRUCTURED STAIRCASE ALGORITHM FOR SKEW-SYMMETRIC / SYMMETRIC , 2005 .
[3] Javier Pérez,et al. Constructing Strong Linearizations of Matrix Polynomials Expressed in Chebyshev Bases , 2017, SIAM J. Matrix Anal. Appl..
[4] Nicholas J. Higham,et al. Definite Matrix Polynomials and their Linearization by Definite Pencils , 2009, SIAM J. Matrix Anal. Appl..
[5] Françoise Tisseur,et al. Hermitian matrix polynomials with real eigenvalues of definite type. Part I: Classification☆ , 2012 .
[6] Volker Mehrmann,et al. Skew-symmetric matrix polynomials and their Smith forms , 2013 .
[7] Nikta Shayanfar,et al. Symmetric and skew-symmetric block-Kronecker linearizations , 2016, 1606.01766.
[8] Peter Lancaster,et al. Lambda-matrices and vibrating systems , 2002 .
[9] C. Schröder. URV decomposition based structured methods for palindromic and even eigenvalue problems , 2007 .
[10] Christian Schroder,et al. Dissipativity Enforcement via Perturbation of Para-Hermitian Pencils , 2013, IEEE Transactions on Circuits and Systems I: Regular Papers.
[11] Jr. G. Forney,et al. Minimal Bases of Rational Vector Spaces, with Applications to Multivariable Linear Systems , 1975 .
[12] D. Kressner,et al. Numerical Algebra, Matrix Theory, Differential-Algebraic Equations and Control Theory , 2015 .
[13] R. Duffin. The Rayleigh-Ritz method for dissipative or gyroscopic systems , 1960 .
[14] S. Furtado,et al. Structured strong linearizations from Fiedler pencils with repetition II , 2014 .
[15] Sk. Safique Ahmad. Perturbation analysis for complex symmetric, skew symmetric, even and odd matrix polynomials , 2011 .
[16] Vanni Noferini,et al. The behaviour of the complete eigenstructure of a polynomial matrix under a generic rational transformation , 2011, 1111.4004.
[17] Volker Mehrmann,et al. Smith Forms of Palindromic Matrix Polynomials , 2011 .
[18] Volker Mehrmann,et al. ON THE SOLUTION OF PALINDROMIC EIGENVALUE PROBLEMS , 2004 .
[19] R. Byers,et al. Symplectic, BVD, and Palindromic Approaches to Discrete-Time Control Problems , 2008 .
[20] J. William Ahwood,et al. CLASSIFICATION , 1931, Foundations of Familiar Language.
[21] Punit Sharma,et al. Structured Eigenvalue Backward Errors of Matrix Pencils and Polynomials with Palindromic Structures , 2015, SIAM J. Matrix Anal. Appl..
[22] Karl Meerbergen,et al. The Quadratic Eigenvalue Problem , 2001, SIAM Rev..
[23] Volker Mehrmann,et al. Vector Spaces of Linearizations for Matrix Polynomials , 2006, SIAM J. Matrix Anal. Appl..
[24] P. Lancaster. Strongly stable gyroscopic systems , 1999 .
[25] Sabine Zaglmayr,et al. Eigenvalue problems in SAW-filter simulations. , 2002 .
[26] Froilán M. Dopico,et al. Spectral equivalence of matrix polynomials and the index sum theorem , 2014 .
[27] Paul Van Dooren,et al. A Framework for Structured Linearizations of Matrix Polynomials in Various Bases , 2016, SIAM J. Matrix Anal. Appl..
[28] P. Dooren. The Computation of Kronecker's Canonical Form of a Singular Pencil , 1979 .
[29] G. M. L. Gladwell,et al. Inverse Problems in Vibration , 1986 .
[30] U. Langer,et al. Finite-element simulation of wave propagation in periodic piezoelectric SAW structures , 2006, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.
[31] Froilán M. Dopico,et al. Fiedler Companion Linearizations and the Recovery of Minimal Indices , 2010, SIAM J. Matrix Anal. Appl..
[32] Shreemayee Bora,et al. Structured Eigenvalue Condition Number and Backward Error of a Class of Polynomial Eigenvalue Problems Structured Eigenvalue Condition Number and Backward Error of a Class of Polynomial Eigenvalue Problems , 2022 .
[33] Volker Mehrmann,et al. Structure-Preserving Methods for Computing Eigenpairs of Large Sparse Skew-Hamiltonian/Hamiltonian Pencils , 2001, SIAM J. Sci. Comput..
[34] Paul M. Terwilliger,et al. The A-like matrices for a hypercube , 2010, 1010.2606.
[35] V. Mehrmann,et al. An implicitly-restarted Krylov subspace method for real symmetric/skew-symmetric eigenproblems , 2012 .
[36] Punit Sharma,et al. Structured Eigenvalue Backward Errors of Matrix Pencils and Polynomials with Hermitian and Related Structures , 2014, SIAM J. Matrix Anal. Appl..
[37] Doktor der Naturwissenschaften. Palindromic and Even Eigenvalue Problems - Analysis and Numerical Methods , 2008 .
[38] Charles R. Johnson,et al. Topics in Matrix Analysis , 1991 .
[39] S. Vologiannidis,et al. Linearizations of Polynomial Matrices with Symmetries and Their Applications. , 2005, Proceedings of the 2005 IEEE International Symposium on, Mediterrean Conference on Control and Automation Intelligent Control, 2005..
[40] Volker Mehrmann,et al. Structured Polynomial Eigenvalue Problems: Good Vibrations from Good Linearizations , 2006, SIAM J. Matrix Anal. Appl..
[41] Vanni Noferini,et al. Chebyshev-Fiedler pencils , 2015 .
[42] Paul Van Dooren,et al. Block Kronecker linearizations of matrix polynomials and their backward errors , 2017, Numerische Mathematik.
[43] Christian Mehl,et al. Jacobi-like Algorithms for the Indefinite Generalized Hermitian Eigenvalue Problem , 2004, SIAM J. Matrix Anal. Appl..
[44] F. R. Gantmakher. The Theory of Matrices , 1984 .
[45] S. Furtado,et al. Structured strong linearizations from Fiedler pencils with repetition I , 2014 .
[46] Roger A. Horn,et al. A real-coninvolutory analog of the polar decomposition , 1993 .
[47] Froilán M. Dopico,et al. Linearizations of Hermitian Matrix Polynomials Preserving the Sign Characteristic , 2015, SIAM J. Matrix Anal. Appl..
[48] Froilán M. Dopico,et al. Palindromic companion forms for matrix polynomials of odd degree , 2011, J. Comput. Appl. Math..
[49] Andrii Dmytryshyn,et al. Structure preserving stratification of skew-symmetric matrix polynomials , 2017 .
[50] David S. Watkins,et al. Structured eigenvalue methods for the computation of corner singularities in 3D anisotropic elastic structures , 2001 .
[51] Volker Mehrmann,et al. Numerical methods for palindromic eigenvalue problems: Computing the anti‐triangular Schur form , 2009, Numer. Linear Algebra Appl..
[52] Volker Mehrmann,et al. Jordan structures of alternating matrix polynomials , 2010 .
[53] P. Dooren,et al. The eigenstructure of an arbitrary polynomial matrix : Computational aspects , 1983 .
[54] Paul Van Dooren,et al. Polynomial Zigzag Matrices, Dual Minimal Bases, and the Realization of Completely Singular Polynomials , 2016 .
[55] Nicholas J. Higham,et al. Symmetric Linearizations for Matrix Polynomials , 2006, SIAM J. Matrix Anal. Appl..
[56] R. Alam,et al. On backward errors of structured polynomial eigenproblems solved by structure preserving linearizations , 2009, 0907.2545.
[57] Alex Townsend,et al. Vector Spaces of Linearizations for Matrix Polynomials: A Bivariate Polynomial Approach , 2016, SIAM J. Matrix Anal. Appl..
[58] Vanni Noferini,et al. Fiedler-comrade and Fiedler-Chebyshev pencils , 2016, SIAM J. Matrix Anal. Appl..
[59] Tiexiang Li,et al. The palindromic generalized eigenvalue problem A∗x=λAx: Numerical solution and applications , 2011 .
[60] Froilán M. Dopico,et al. Large vector spaces of block-symmetric strong linearizations of matrix polynomials , 2015 .
[61] Froilán M. Dopico,et al. Block minimal bases ℓ-ifications of matrix polynomials , 2018, Linear Algebra and its Applications.
[62] S. Liberty,et al. Linear Systems , 2010, Scientific Parallel Computing.
[63] G. Stewart. On the Sensitivity of the Eigenvalue Problem $Ax = \lambda Bx$ , 1972 .
[64] V. Mehrmann,et al. Nonlinear eigenvalue problems: a challenge for modern eigenvalue methods , 2004 .
[65] V. Mehrmann,et al. Möbius transformations of matrix polynomials , 2015 .
[66] Daniel Kressner,et al. Implicit QR algorithms for palindromic and even eigenvalue problems , 2009, Numerical Algorithms.
[67] G. Stewart,et al. An Algorithm for Generalized Matrix Eigenvalue Problems. , 1973 .
[68] S. Furtado,et al. Palindromic linearizations of a matrix polynomial of odd degreee obtained from Fiedler pencils with repetition , 2012 .
[69] W. Wolovich. State-space and multivariable theory , 1972 .
[70] Froil'an M. Dopico,et al. A unified approach to Fiedler-like pencils via strong block minimal bases pencils , 2016, 1611.07170.
[71] Peter Lancaster,et al. The theory of matrices , 1969 .
[72] Yeong-Bin Yang,et al. Three-Dimensional Analysis of Train-Rail-Bridge Interaction Problems , 2001 .
[73] Wen-Wei Lin,et al. Palindromic quadratization and structure-preserving algorithm for palindromic matrix polynomials of even degree , 2011, Numerische Mathematik.
[74] Bibhas Adhikari,et al. Backward errors and linearizations for palindromic matrix polynomials , 2008, 0812.4154.
[75] C. Loan. The ubiquitous Kronecker product , 2000 .
[76] Rudolf A. Römer,et al. The Anderson Model of Localization: A Challenge for Modern Eigenvalue Methods , 1999, SIAM J. Sci. Comput..
[77] F. M. Dopico,et al. LINEARIZATIONS OF SINGULAR MATRIX POLYNOMIALS AND THE RECOVERY OF MINIMAL INDICES , 2009 .