Midinfrared Supercontinuum Generation in As2Se3–As2S3 Chalcogenide Glass Fiber With High NA

We have experimentally demonstrated the supercontinuum (SC) generation in the As<sub>2</sub>Se<sub>3</sub>–As <sub>2</sub>S<sub>3</sub> multimaterial chalcogenide glass fiber with ultrahigh-numerical aperture (NA∼1.4). The fiber preform was fabricated via a modified one-step coextrusion method before it was drawn into the small-core fiber. With a 10-μm diameter As<sub>2</sub>Se<sub>3</sub> core and a 246-μm diameter As<sub>2</sub>S<sub>3</sub> cladding, the fiber exhibited a zero-dispersion wavelength near 4.5 μm, and a minimum loss around 5.2 dB/m at 5.8 μm. The generated SC spanning from 1.4 to 8.8 μm was generated in a 20-cm-long fiber pumped by a 4.8 μm laser with a short-pulse width of ∼150 fs. The numerical modeling of midinfrared supercontinuum generation in a fiber with an exceptionally high NA at 3.5 and 4.8 μm was presented as well, which were in agreement with their respective experimental results.

[1]  W. Marsden I and J , 2012 .

[2]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[3]  A. Abouraddy,et al.  Multimaterial disc-to-fiber approach to efficiently produce robust infrared fibers , 2014 .

[4]  S. Dai,et al.  Ultrabroad supercontinuum generated from a highly nonlinear Ge-Sb-Se fiber. , 2016, Optics letters.

[5]  Thomas G. Brown,et al.  Supercontinuum generation in a fiber grating , 2004 .

[6]  Yi Yu,et al.  Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber. , 2015, Optics express.

[7]  Q. Nie,et al.  Fabrication and characterization of Ge20Sb15S65 chalcogenide glass for photonic crystal fibers , 2014 .

[8]  Xiang Shen,et al.  Systematic z-scan measurements of the third order nonlinearity of chalcogenide glasses , 2014 .

[9]  A. Stentz,et al.  Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm , 2000 .

[10]  Ole Bang,et al.  Mid-infrared supercontinuum generation to 12.5μm in large NA chalcogenide step-index fibres pumped at 4.5μm. , 2014, Optics express.

[11]  François Légaré,et al.  Mid-infrared supercontinuum generation in fluoroindate fiber. , 2013, Optics letters.

[12]  Benjamin J Eggleton,et al.  1.9 octave supercontinuum generation in a As₂S₃ step-index fiber driven by mid-IR OPCPA. , 2014, Optics letters.

[13]  Guangming Tao,et al.  Robust multimaterial tellurium-based chalcogenide glass fibers for mid-wave and long-wave infrared transmission. , 2014, Optics letters.

[14]  Hall,et al.  Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis , 2000, Science.

[15]  David J. Richardson,et al.  Sensing with microstructured optical fibres , 2001 .

[16]  Tonglei Cheng,et al.  Mid-infrared supercontinuum generation spanning 2.0 to 15.1  μm in a chalcogenide step-index fiber. , 2016, Optics letters.

[17]  Guangming Tao,et al.  Fabrication and characterization of multimaterial chalcogenide glass fiber tapers with high numerical apertures. , 2015, Optics express.

[18]  F. Smektala,et al.  Mid-infrared 2000-nm bandwidth supercontinuum generation in suspended-core microstructured sulfide and tellurite optical fibers. , 2012, Optics express.

[19]  A Humeau,et al.  Nonlinear optical properties of glasses in the system Ge/Ga-Sb-S/Se. , 2006, Optics letters.

[20]  Ole Bang,et al.  Supercontinuum generation in a photonic crystal fiber with two zero-dispersion wavelengths tapered to normal dispersion at all wavelengths. , 2005, Optics express.

[21]  Benjamin J Eggleton,et al.  Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires. , 2008, Optics letters.

[22]  Trevor M. Benson,et al.  Thulium pumped mid-infrared 0.9-9μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers. , 2014, Optics express.

[23]  Yi Yu,et al.  Mid-infrared supercontinuum generation in chalcogenides , 2013 .

[24]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[25]  Stuart D. Jackson,et al.  Octave spanning supercontinuum in an As2S3 taper using ultra-low pump pulse energy , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[26]  Guangming Tao,et al.  Multimaterial preform coextrusion for robust chalcogenide optical fibers and tapers. , 2012, Optics letters.

[27]  J. Fujimoto,et al.  Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber. , 2001, Optics letters.

[28]  Tonglei Cheng,et al.  Mid-infrared supercontinuum generation in a suspended-core As2S3 chalcogenide microstructured optical fiber. , 2013, Optics express.

[29]  Trevor M. Benson,et al.  Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre , 2014, Nature Photonics.

[30]  B. Luther-Davies,et al.  Low loss, high NA chalcogenide glass fibers for broadband mid-infrared supercontinuum generation , 2015 .

[31]  François Légaré,et al.  Multioctave infrared supercontinuum generation in large-core As₂S₃ fibers. , 2014, Optics letters.

[32]  Klaus Mølmer,et al.  Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths. , 2004, Optics express.

[33]  G Korn,et al.  Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers. , 2002, Physical review letters.

[34]  J. Dudley,et al.  Supercontinuum generation in photonic crystal fiber , 2006 .

[35]  Tonglei Cheng,et al.  Mid-infrared supercontinuum generation in a four-hole As2S5 chalcogenide microstructured optical fiber , 2014 .

[36]  Yi Yu,et al.  1.8-10  μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power. , 2015, Optics letters.