Ziv-zaikai bound for target location and velocity estimation using noncoherent MIMO radar

Bayesian bounds incorporate prior knowledge on parameters of interest. Nonlocal bounds can provide more accurate prediction of the performance of estimators over the full range of possible mean-squared errors. For example, local bounds, such as the Cramer-Rao bound (CRB), provide especially inaccurate predictions under low signal-to-clutter-plus-noise ratio (SCNR) conditions. In this paper, we derive the Ziv-Zakai bound (ZZB) for joint location and velocity estimation for noncoherent, multiple-input multiple-output (MIMO) radar employing orthogonal waveforms for widely spaced antennas and white Gaussian clutter-plus-noise. The ZZB is a non-local Bayesian bound. We show that the ZZB is a comprehensive metric that captures the effect of the SCNR, the waveforms, and the other parameters of the radar system. The ZZB is shown to display three SCNR operating regions, namely the clutter-plus-noise, ambiguity, and asymptotic regions. The effects of different system configurations are explored through numerical studies.

[1]  Vlad M. Chiriac,et al.  Target localization in passive and active systems: Performance bounds , 2012 .

[2]  Alexander M. Haimovich,et al.  Spatial Diversity in Radars—Models and Detection Performance , 2006, IEEE Transactions on Signal Processing.

[3]  Kristine L. Bell,et al.  Explicit Ziv-Zakai lower bound for bearing estimation , 1996, 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings.

[4]  M. Schwartz,et al.  Communication Systems and Techniques , 1996, IEEE Communications Magazine.

[5]  Jian Li,et al.  MIMO Radar with Colocated Antennas , 2007, IEEE Signal Processing Magazine.

[6]  Brian M. Sadler,et al.  Ziv–Zakai Bounds on Time Delay Estimation in Unknown Convolutive Random Channels , 2010, IEEE Transactions on Signal Processing.

[7]  H. V. Trees,et al.  Some Lower Bounds on Signal Parameter Estimation , 2007 .

[8]  Alexander M. Haimovich,et al.  Noncoherent MIMO Radar for Location and Velocity Estimation: More Antennas Means Better Performance , 2010, IEEE Transactions on Signal Processing.

[9]  Yossef Steinberg,et al.  Extended Ziv-Zakai lower bound for vector parameter estimation , 1997, IEEE Trans. Inf. Theory.

[10]  A. Weiss,et al.  Fundamental limitations in passive time delay estimation--Part I: Narrow-band systems , 1983 .

[11]  E. J. Kelly,et al.  The Detection of Radar Echoes in Noise. I , 1960 .

[12]  Vlad M. Chiriac,et al.  Ziv — Zakai lower bound on target localization estimation in MIMO radar systems , 2010, 2010 IEEE Radar Conference.

[13]  Brian M. Sadler,et al.  Source localization with distributed sensor arrays and partial spatial coherence , 2000, IEEE Transactions on Signal Processing.

[14]  L.J. Cimini,et al.  MIMO Radar with Widely Separated Antennas , 2008, IEEE Signal Processing Magazine.

[15]  Qian He,et al.  Noncoherent versus coherent MIMO radar: Performance and simplicity analysis , 2012, Signal Process..