Engineering Multiwalled Carbon Nanotubes Inside a Transmission Electron Microscope Using Nanorobotic Manipulation

This paper provides a review of recent experimental techniques developed for shell engineering individual multiwalled carbon nanotubes (MWNTs). Basic processes for the nanorobotic manipulation of MWNTs inside a transmission electron microscope are investigated. MWNTs, bamboo-structured carbon nanotubes (CNTs), Cu-filled CNTs, and CNTs with quantum dots attached are used as test structures for manipulation. Picking is realized using van der Waals forces, ldquostickyrdquo probes, electron-beam-induced deposition, and electric breakdown. Cap opening and shell shortening are presented using field emission current. Controlled peeling and thinning of the shells of MWNTs are achieved by electric breakdown, and changes in MWNT structures are correlated with electrical measurements. These processes are fundamental for the characterization of nanoscale materials, the structuring of nanosized building blocks, and the prototyping of nanoelectromechanical systems.

[1]  Philip G. Collins,et al.  Materials: Peeling and sharpening multiwall nanotubes , 2000, Nature.

[2]  Rodney S. Ruoff,et al.  Controlled Sliding and Pullout of Nested Shells in Individual Multiwalled Carbon Nanotubes , 2000 .

[3]  Fumihito Arai,et al.  DESTRUCTIVE CONSTRUCTION OF NANOSTRUCTURES WITH CARBON NANOTUBES , 2002 .

[4]  Shengming Zhou,et al.  Thermal CVD synthesis of carbon nanotubes filled with single-crystalline Cu nanoneedles at tips , 2006 .

[5]  B J Nelson,et al.  Batch fabrication of carbon nanotube bearings , 2007, Nanotechnology.

[6]  de Heer WA,et al.  Nanomeasurements in Transmission Electron Microscopy. , 2000, Microscopy and microanalysis : the official journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada.

[7]  M. Dresselhaus,et al.  Enhanced ductile behavior of tensile-elongated individual double-walled and triple-walled carbon nanotubes at high temperatures. , 2007, Physical review letters.

[8]  Bradley J. Nelson,et al.  Tutorial - Robotics in the small Part II: Nanorobotics , 2007, IEEE Robotics & Automation Magazine.

[9]  Li Zhang,et al.  Nanorobotic spot welding: controlled metal deposition with attogram precision from copper-filled carbon nanotubes. , 2007, Nano letters.

[10]  Quanshui Zheng,et al.  Multiwalled carbon nanotubes as gigahertz oscillators. , 2002, Physical review letters.

[11]  R. Ruoff,et al.  Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load , 2000, Science.

[12]  Fumihito Arai,et al.  Assembly of nanodevices with carbon nanotubes through nanorobotic manipulations , 2003, Proc. IEEE.

[13]  P. Avouris,et al.  Engineering Carbon Nanotubes and Nanotube Circuits Using Electrical Breakdown , 2001, Science.

[14]  Fumihito Arai,et al.  Electron-beam-induced deposition with carbon nanotube emitters , 2002 .

[15]  F. Arai,et al.  A hybrid nanorobotic manipulation system integrated with nanorobotic manipulators inside scanning and transmission electron microscopes , 2004, 4th IEEE Conference on Nanotechnology, 2004..

[16]  P. Avouris,et al.  Current saturation and electrical breakdown in multiwalled carbon nanotubes. , 2001, Physical review letters.

[17]  Fumihito Arai,et al.  Hybrid nanorobotic manipulation system inside scanning electron microscope and transmission electron microscope , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[18]  Lixin Dong,et al.  Optical Tracking of Multi-walled Carbon Nanotubes by Attaching Functionalized Quantum Dots , 2006, 2006 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems.

[19]  Malcolm L. H. Green,et al.  A simple chemical method of opening and filling carbon nanotubes , 1994, Nature.

[20]  Sergej Fatikow,et al.  A carbon nanofibre scanning probe assembled using an electrothermal microgripper , 2007 .

[21]  Peter T. Cummings,et al.  Oscillatory Behavior of Double-Walled Nanotubes under Extension: A Simple Nanoscale Damped Spring , 2003 .

[22]  Z. Suo,et al.  Kink formation and motion in carbon nanotubes at high temperatures. , 2006, Physical review letters.

[23]  M. Dresselhaus,et al.  Atomic-scale imaging of wall-by-wall breakdown and concurrent transport measurements in multiwall carbon nanotubes. , 2005, Physical review letters.

[24]  Zettl,et al.  Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes , 2000, Science.

[25]  Bradley J. Nelson,et al.  Carbon nanotubes for nanorobotics , 2007 .

[26]  N. Tanaka,et al.  Atomistic visualization of epitaxial growth process using a new TEM specimen holder for vacuum-deposition , 1997 .

[27]  B. Bourlon,et al.  Carbon Nanotube Based Bearing for Rotational Motions , 2004 .

[28]  T. D. Yuzvinsky,et al.  Imaging the life story of nanotube devices , 2005 .

[29]  A. M. Fennimore,et al.  Rotational actuators based on carbon nanotubes , 2003, Nature.

[30]  Fumihito Arai,et al.  Towards nanotube linear servomotors , 2006, IEEE Transactions on Automation Science and Engineering.

[31]  Bradley J. Nelson,et al.  Hybrid Nanorobotic Approaches to NEMS , 2005, ISRR.