Slit Tubes for Semisoft Pneumatic Actuators

This article describes a new principle for designing soft or ‘semisoft’ pneumatic actuators: SLiT (for SLit‐in‐Tube) actuators. Inflating an elastomeric balloon, when enclosed by an external shell (a material with higher Young's modulus) containing slits of different directions and lengths, produces a variety of motions, including bending, twisting, contraction, and elongation. The requisite pressure for actuation depends on the length of the slits, and this dependence allows sequential actuation by controlling the applied pressure. Different actuators can also be controlled using external “sliders” that act as reprogrammable “on‐off” switches. A pneumatic arm and a walker constructed from SLiT actuators demonstrate their ease of fabrication and the range of motions they can achieve.

[1]  Kevin C. Galloway,et al.  Interaction Forces of Soft Fiber Reinforced Bending Actuators , 2017, IEEE/ASME Transactions on Mechatronics.

[2]  James C. Weaver,et al.  Soft robotic sleeve supports heart function , 2017, Science Translational Medicine.

[3]  George M. Whitesides,et al.  Negative-Pressure Soft Linear Actuator with a Mechanical Advantage , 2017 .

[4]  Fionnuala Connolly,et al.  Automatic design of fiber-reinforced soft actuators for trajectory matching , 2016, Proceedings of the National Academy of Sciences.

[5]  Kevin O'Brien,et al.  Optoelectronically innervated soft prosthetic hand via stretchable optical waveguides , 2016, Science Robotics.

[6]  Aaron D. Mazzeo,et al.  Rotary Actuators Based on Pneumatically Driven Elastomeric Structures , 2016, Advanced materials.

[7]  Yanlei Yu,et al.  Thermo- and photo-driven soft actuators based on crosslinked liquid crystalline polymers , 2016 .

[8]  Joo Chuan Yeo,et al.  Flexible and Stretchable Strain Sensing Actuator for Wearable Soft Robotic Applications , 2016 .

[9]  Gu-Yeon Wei,et al.  Multilayer laminated piezoelectric bending actuators: design and manufacturing for optimum power density and efficiency , 2016 .

[10]  Robert J. Wood,et al.  Soft Robotic Grippers for Biological Sampling on Deep Reefs , 2016, Soft robotics.

[11]  Sung-Hoon Ahn,et al.  Comparison of mold designs for SMA-based twisting soft actuator , 2016 .

[12]  Sridhar Kota,et al.  Kinematics of a Generalized Class of Pneumatic Artificial Muscles , 2015 .

[13]  Sanlin S. Robinson,et al.  Poroelastic Foams for Simple Fabrication of Complex Soft Robots , 2015, Advanced materials.

[14]  G. Whitesides,et al.  Buckling of Elastomeric Beams Enables Actuation of Soft Machines , 2015, Advanced materials.

[15]  Katia Bertoldi,et al.  Amplifying the response of soft actuators by harnessing snap-through instabilities , 2015, Proceedings of the National Academy of Sciences.

[16]  Sridhar Kota,et al.  Design and Modeling of Generalized Fiber-Reinforced Pneumatic Soft Actuators , 2015, IEEE Transactions on Robotics.

[17]  D. Rus,et al.  Design, fabrication and control of soft robots , 2015, Nature.

[18]  P. Polygerinos,et al.  Mechanical Programming of Soft Actuators by Varying Fiber Angle , 2015 .

[19]  Daniela Rus,et al.  A Recipe for Soft Fluidic Elastomer Robots , 2015, Soft robotics.

[20]  Stephen A. Morin,et al.  Using “Click‐e‐Bricks” to Make 3D Elastomeric Structures , 2014, Advanced materials.

[21]  Matteo Cianchetti,et al.  Dynamic Model of a Multibending Soft Robot Arm Driven by Cables , 2014, IEEE Transactions on Robotics.

[22]  G. Whitesides,et al.  Pneumatic Networks for Soft Robotics that Actuate Rapidly , 2014 .

[23]  MajidiCarmel,et al.  Soft Robotics: A Perspective—Current Trends and Prospects for the Future , 2014 .

[24]  Daniela Rus,et al.  Autonomous Soft Robotic Fish Capable of Escape Maneuvers Using Fluidic Elastomer Actuators. , 2014, Soft robotics.

[25]  Jamie L. Branch,et al.  Robotic Tentacles with Three‐Dimensional Mobility Based on Flexible Elastomers , 2013, Advanced materials.

[26]  G. Whitesides,et al.  Elastomeric Origami: Programmable Paper‐Elastomer Composites as Pneumatic Actuators , 2012 .

[27]  Bertrand Tondu,et al.  Modelling of the McKibben artificial muscle: A review , 2012 .

[28]  C. S. Kothera,et al.  Special topical issue on fluidic artificial muscles , 2012 .

[29]  Filip Ilievski,et al.  Multigait soft robot , 2011, Proceedings of the National Academy of Sciences.

[30]  George M. Whitesides,et al.  Titelbild: Soft Robotics for Chemists (Angew. Chem. 8/2011) , 2011 .

[31]  Filip Ilievski,et al.  Soft robotics for chemists. , 2011, Angewandte Chemie.

[32]  Robert J. Webster,et al.  Design and Kinematic Modeling of Constant Curvature Continuum Robots: A Review , 2010, Int. J. Robotics Res..

[33]  Heinrich M. Jaeger,et al.  Universal robotic gripper based on the jamming of granular material , 2010, Proceedings of the National Academy of Sciences.

[34]  M. M. Gavrilović,et al.  Positional servo-mechanism activated by artificial muscles , 2006, Medical and biological engineering.

[35]  Zollikofer STEPPING PATTERNS IN ANTS - INFLUENCE OF BODY MORPHOLOGY , 1994, The Journal of experimental biology.

[36]  Mark R. Cutkosky,et al.  Robotic grasping and fine manipulation , 1985 .

[37]  V. L. Nickel,et al.  DEVELOPMENT OF USEFUL FUNCTION IN THE SEVERELY PARALYZED HAND. , 1963, The Journal of bone and joint surgery. American volume.