Numerical methods for immersed FSI with thin-walled structures

The numerical simulation of a thin-walled structure immersed in an incompressible fluid can be addressed by various methods. In this paper, three of them are considered: the Arbitrary Lagrangian-Eulerian (ALE) method, the Fictitious Domain/Lagrange multipliers (FD) method and the Nitsche-XFEM method. Taking ALE as a reference, the advantages and limitations of FD and Nitsche-XFEM are carefully discussed on three benchmark test cases which have been chosen to be representative of typical difficulties encountered in valves or living cells simulations.

[1]  F P T Baaijens,et al.  A three-dimensional computational analysis of fluid-structure interaction in the aortic valve. , 2003, Journal of biomechanics.

[2]  Miguel A. Fernández,et al.  Nitsche-XFEM for the coupling of an incompressible fluid with immersed thin-walled structures , 2016 .

[3]  Daniele Boffi,et al.  The Finite Element Immersed Boundary Method with Distributed Lagrange Multiplier , 2014, SIAM J. Numer. Anal..

[4]  Antonio J. Gil,et al.  On continuum immersed strategies for Fluid-Structure Interaction , 2012 .

[5]  F. Baaijens A fictitious domain/mortar element method for fluid-structure interaction , 2001 .

[6]  Dominique Chapelle,et al.  MODELING OF THE INCLUSION OF A REINFORCING SHEET WITHIN A 3D MEDIUM , 2003 .

[7]  Andreas Zilian,et al.  The enriched space–time finite element method (EST) for simultaneous solution of fluid–structure interaction , 2008 .

[8]  Charles S. Peskin,et al.  Improved Volume Conservation in the Computation of Flows with Immersed Elastic Boundaries , 1993 .

[9]  Ajit Patel Lagrange multiplier method with penalty for elliptic and parabolic interface problems , 2011 .

[10]  Matteo Astorino,et al.  Fluid-structure interaction and multi-body contact. Application to aortic valves , 2009 .

[11]  Daniele Boffi,et al.  A fictitious domain approach with Lagrange multiplier for fluid-structure interactions , 2015, Numerische Mathematik.

[12]  D. Chapelle,et al.  The Finite Element Analysis of Shells - Fundamentals , 2003 .

[13]  Miguel A. Fernández,et al.  Continuous Interior Penalty Finite Element Method for Oseen's Equations , 2006, SIAM J. Numer. Anal..

[14]  K. Bathe Finite Element Procedures , 1995 .

[15]  Antonio J. Gil,et al.  An enhanced Immersed Structural Potential Method for fluid-structure interaction , 2013, J. Comput. Phys..

[16]  Guanyu Zhou,et al.  Analysis of the fictitious domain method with penalty for elliptic problems , 2014 .

[17]  P. Angot,et al.  A Fictitious domain approach with spread interface for elliptic problems with general boundary conditions , 2007 .

[18]  Hu Dai,et al.  Fluid-structure interaction involving large deformations: 3D simulations and applications to biological systems , 2014, J. Comput. Phys..

[19]  Tayfan E. Tezduyar,et al.  Stabilized Finite Element Formulations for Incompressible Flow Computations , 1991 .

[20]  T. Wick Fluid-structure interactions using different mesh motion techniques , 2011 .

[21]  Boyce E. Griffith,et al.  On the Volume Conservation of the Immersed Boundary Method , 2012 .

[22]  T. Wick Flapping and contact FSI computations with the fluid–solid interface-tracking/interface-capturing technique and mesh adaptivity , 2014 .

[23]  Lucy T. Zhang,et al.  Interpolation functions in the immersed boundary and finite element methods , 2010 .

[24]  Luca Heltai,et al.  Benchmarking the immersed finite element method for fluid-structure interaction problems , 2013, Comput. Math. Appl..

[25]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[26]  Miguel A. Fernández,et al.  An unfitted Nitsche method for incompressible fluid–structure interaction using overlapping meshes , 2014 .

[27]  Leo G. Rebholz,et al.  Stabilizing poor mass conservation in incompressible flow problems with large irrotational forcing and application to thermal convection , 2012 .

[28]  Jean-Frédéric Gerbeau,et al.  Algorithms for fluid-structure interaction problems , 2009 .

[29]  W. Wall,et al.  An eXtended Finite Element Method/Lagrange multiplier based approach for fluid-structure interaction , 2008 .

[30]  ANDRÉ MASSING,et al.  Efficient Implementation of Finite Element Methods on Nonmatching and Overlapping Meshes in Three Dimensions , 2013, SIAM J. Sci. Comput..

[31]  Bertrand Maury,et al.  Approximation of Single Layer Distributions by Dirac Masses in Finite Element Computations , 2014, J. Sci. Comput..

[32]  Daniele Boffi,et al.  Local Mass Conservation of Stokes Finite Elements , 2012, J. Sci. Comput..

[33]  Jean-Frédéric Gerbeau,et al.  A partitioned fluid-structure algorithm for elastic thin valves with contact , 2008 .

[34]  Frédéric Alauzet,et al.  A changing-topology moving mesh technique for large displacements , 2013, Engineering with Computers.

[35]  John A. Evans,et al.  Immersogeometric cardiovascular fluid-structure interaction analysis with divergence-conforming B-splines. , 2017, Computer methods in applied mechanics and engineering.

[36]  Boyce E. Griffith,et al.  An Immersed Boundary method with divergence-free velocity interpolation and force spreading , 2017, J. Comput. Phys..

[37]  G. Cottet,et al.  EULERIAN FORMULATION AND LEVEL SET MODELS FOR INCOMPRESSIBLE FLUID-STRUCTURE INTERACTION , 2008 .

[38]  D. Boffi,et al.  FINITE ELEMENT APPROACH TO IMMERSED BOUNDARY METHOD WITH DIFFERENT FLUID AND SOLID DENSITIES , 2011 .

[39]  Patrick Patrick Anderson,et al.  A combined fictitious domain/adaptive meshing method for fluid–structure interaction in heart valves , 2004 .

[40]  Boyce E. Griffith,et al.  Hybrid finite difference/finite element immersed boundary method , 2016, International journal for numerical methods in biomedical engineering.

[41]  Wulf G. Dettmer,et al.  A stabilised immersed framework on hierarchical b-spline grids for fluid-flexible structure interaction with solid–solid contact , 2018, Computer Methods in Applied Mechanics and Engineering.

[42]  R. Glowinski,et al.  A distributed Lagrange multiplier/fictitious domain method for particulate flows , 1999 .

[43]  Thomas Richter,et al.  A Fully Eulerian formulation for fluid-structure-interaction problems , 2013, J. Comput. Phys..

[44]  Hugo Casquero,et al.  NURBS-based numerical proxies for red blood cells and circulating tumor cells in microscale blood flow , 2017 .

[45]  J. L. Leeuwen,et al.  Fish and Flag – Exploring Fluid-Structure Interaction during Undulatory Swimming in Fish , 2010 .

[46]  Dominique Chapelle,et al.  Coupling schemes for the FSI forward prediction challenge: Comparative study and validation , 2017, International journal for numerical methods in biomedical engineering.

[47]  Yuri Bazilevs,et al.  An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves. , 2015, Computer methods in applied mechanics and engineering.

[48]  T. Tezduyar,et al.  Mesh Moving Techniques for Fluid-Structure Interactions With Large Displacements , 2003 .

[49]  Christian Vergara,et al.  An Unfitted Formulation for the Interaction of an Incompressible Fluid with a Thick Structure via an XFEM/DG Approach , 2018, SIAM J. Sci. Comput..

[50]  Thierry Coupez,et al.  Immersed stress method for fluid–structure interaction using anisotropic mesh adaptation , 2013 .

[51]  Tomohiro Sawada,et al.  LLM and X-FEM based interface modeling of fluid–thin structure interactions on a non-interface-fitted mesh , 2011 .