Gabriel-Ulmer duality and Lawvere theories enriched over a general base

Motivated by the search for a body of mathematical theory to support the semantics of computational effects, we first recall the relationship between Lawvere theories and monads on Set. We generalise that relationship from Set to an arbitrary locally presentable category such as Poset and ωCpo or functor categories such as [Inj, Set] and [Inj, ωCpo]. That involves allowing the arities of Lawvere theories to be extended to being size-restricted objects of the locally presentable category. We develop a body of theory at this level of generality, in particular explaining how the relationship between generalised Lawvere theories and monads extends Gabriel–Ulmer duality.

[1]  Nick Benton,et al.  Monads and Effects , 2000, APPSEM.

[2]  John Power Enriched Lawvere Theories , .

[3]  Eugenio Moggi,et al.  Notions of Computation and Monads , 1991, Inf. Comput..

[4]  A. C. Ehresmann,et al.  CAHIERS DE TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES , 2008 .

[5]  Eugenio Moggi,et al.  Computational lambda-calculus and monads , 1989, [1989] Proceedings. Fourth Annual Symposium on Logic in Computer Science.

[6]  Peter W. O'Hearn,et al.  Algol-like Languages , 1997, Progress in Theoretical Computer Science.

[7]  R. V. Book Algol-like Languages , 1997, Progress in Theoretical Computer Science.

[8]  John Power,et al.  Lawvere theories enriched over a general base , 2009 .

[9]  John Power,et al.  Discrete Lawvere theories and computational effects , 2006, Theor. Comput. Sci..

[10]  G. M. Kelly,et al.  BASIC CONCEPTS OF ENRICHED CATEGORY THEORY , 2022, Elements of ∞-Category Theory.

[11]  F. W. Lawvere,et al.  FUNCTORIAL SEMANTICS OF ALGEBRAIC THEORIES. , 1963, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Reinhold Heckmann,et al.  Probabilistic Domains , 1994, CAAP.

[13]  G. M. Kelly,et al.  Structures defined by finite limits in the enriched context, I , 1982 .

[14]  Gordon D. Plotkin,et al.  Combining algebraic effects with continuations , 2007, Theor. Comput. Sci..

[15]  John Power,et al.  Combining continuations with other effects , 2004 .

[16]  Ross Street,et al.  Pullbacks equivalent to pseudopullbacks , 1993 .

[17]  Michael Barr,et al.  Category theory for computing science , 1995, Prentice Hall International Series in Computer Science.

[18]  M. Barr,et al.  Toposes, Triples and Theories , 1984 .

[19]  Law Fw FUNCTORIAL SEMANTICS OF ALGEBRAIC THEORIES. , 1963 .

[20]  Peter W. O'Hearn,et al.  Algol-Like Languages: v. 2 , 1996 .

[21]  John Power,et al.  The Category Theoretic Understanding of Universal Algebra: Lawvere Theories and Monads , 2007, Computation, Meaning, and Logic.

[22]  John Power,et al.  Why Tricategories? , 1995, Inf. Comput..

[23]  John Power,et al.  Semantics for Local Computational Effects , 2006, MFPS.

[24]  John Power,et al.  Discrete Lawvere Theories , 2005, CALCO.

[25]  Christoph Lüth,et al.  Monads and Modularity , 2002, FroCoS.

[26]  Edmund Robinson Variations on Algebra: Monadicity and Generalisations of Equational Therories , 2002, Formal Aspects of Computing.

[27]  Gordon D. Plotkin,et al.  Algebraic Operations and Generic Effects , 2003, Appl. Categorical Struct..

[28]  Gordon D. Plotkin,et al.  Notions of Computation Determine Monads , 2002, FoSSaCS.

[29]  Gordon D. Plotkin,et al.  Combining effects: Sum and tensor , 2006, Theor. Comput. Sci..