THE ORBIT OF THE ORPHAN STREAM

We use recent Sloan Extension for Galactic Understanding and Exploration (SEGUE) spectroscopy and the Sloan Digital Sky Survey (SDSS) and SEGUE imaging data to measure the sky position, distance, and radial velocities of stars in the tidal debris stream that is commonly referred to as the “Orphan Stream.” We fit orbital parameters to the data and find a prograde orbit with an apogalacticon, perigalacticon, and eccentricity of 90 kpc, 16.4 kpc, and e = 0.7, respectively. Neither the dwarf galaxy UMa II nor the Complex A gas cloud has velocities consistent with a kinematic association with the Orphan Stream. It is possible that Segue-1 is associated with the Orphan Stream, but no other known Galactic clusters or dwarf galaxies in the Milky Way lie along its orbit. The detected portion of the stream ranges from 19 to 47 kpc from the Sun and is an indicator of the mass interior to these distances. There is a marked increase in the density of Orphan Stream stars near (l, b) = (253°, 49°), which could indicate the presence of the progenitor at the edge of the SDSS data. If this is the progenitor, then the detected portion of the Orphan Stream is a leading tidal tail. We find blue horizontal branch (BHB) stars and F turnoff stars associated with the Orphan Stream. The turnoff color is (g − r)0 = 0.22. The BHB stars have a low metallicity of [Fe/H]WBG = −2.1. The orbit is best fit to a halo potential with a halo plus disk mass of about 2.6 × 1011 M☉, integrated to 60 kpc from the Galactic center. Our fits are done to orbits rather than full N-body simulations; we show that if N-body simulations are used, the inferred mass of the galaxy would be slightly smaller. Our best fit is found with a logarithmic halo speed of vhalo = 73 ± 24 km s−1, a disk+bulge mass of M(R < 60 kpc) = 1.3 × 1011 M☉, and a halo mass of M(R < 60 kpc) = 1.4 × 1011 M☉. However, we can find similar fits to the data that use a Navarro–Frenk–White halo profile or that have smaller disk masses and correspondingly larger halo masses. Distinguishing between different classes of models requires data over a larger range of distances. The Orphan Stream is projected to extend to 90 kpc from the Galactic center, and measurements of these distant parts of the stream would be a powerful probe of the mass of the Milky Way.

[1]  H. Rix,et al.  STELLAR POPULATION VARIATIONS IN THE MILKY WAY's STELLAR HALO , 2010, 1010.2239.

[2]  Cambridge,et al.  CONSTRAINING THE MILKY WAY POTENTIAL WITH A SIX-DIMENSIONAL PHASE-SPACE MAP OF THE GD-1 STELLAR STREAM , 2009, 0907.1085.

[3]  T. Beers,et al.  PROPER MOTIONS IN KAPTEYN SELECTED AREA 103: A PRELIMINARY ORBIT FOR THE VIRGO STELLAR STREAM , 2009, 0907.1249.

[4]  J. Binney,et al.  Locating the orbits delineated by tidal streams , 2009, 0907.0360.

[5]  Anu,et al.  The origin of Segue 1 , 2009, 0906.3669.

[6]  Benjamin A. Willett,et al.  DISCOVERY OF A NEW, POLAR-ORBITING DEBRIS STREAM IN THE MILKY WAY STELLAR HALO , 2009, 0906.3291.

[7]  T. Beers,et al.  TRACING SAGITTARIUS STRUCTURE WITH SDSS AND SEGUE IMAGING AND SPECTROSCOPY , 2009, 0905.4502.

[8]  A. Helmi,et al.  Local Dark Matter Galactic Dynamics , 2009 .

[9]  Anna Frebel,et al.  HIGH-RESOLUTION SPECTROSCOPY OF EXTREMELY METAL-POOR STARS IN THE LEAST EVOLVED GALAXIES: URSA MAJOR II and COMA BERENICES , 2009, 0902.2395.

[10]  Heidi Jo Newberg,et al.  SEGUE: A SPECTROSCOPIC SURVEY OF 240,000 STARS WITH g = 14–20 , 2009, 0902.1781.

[11]  H. Rix,et al.  KINEMATICS OF THE TIDAL DEBRIS OF THE GLOBULAR CLUSTER PALOMAR 5 , 2009 .

[12]  Benjamin A. Willett,et al.  AN ORBIT FIT FOR THE GRILLMAIR DIONATOS COLD STELLAR STREAM , 2009, 0901.4046.

[13]  K. Abazajian,et al.  THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.

[14]  B. Willman,et al.  THE LEAST-LUMINOUS GALAXY: SPECTROSCOPY OF THE MILKY WAY SATELLITE SEGUE 1 , 2008, 0809.2781.

[15]  D. York,et al.  Galactic Globular and Open Clusters in the Sloan Digital Sky Survey. I. Crowded-Field Photometry and Cluster Fiducial Sequences in ugriz , 2008, 0808.0001.

[16]  A. Helmi,et al.  On the genealogy of the Orphan Stream , 2008, 0805.0508.

[17]  H. Rix,et al.  The Milky Way’s Circular Velocity Curve to 60 kpc and an Estimate of the Dark Matter Halo Mass from the Kinematics of ~2400 SDSS Blue Horizontal-Branch Stars , 2008, 0801.1232.

[18]  B. Yanny,et al.  Submitted for publication in the Astronomical Journal The SEGUE Stellar Parameter Pipeline. III. Comparison with High-Resolution Spectroscopy of SDSS/SEGUE Field Stars 1 , 2022 .

[19]  Australian National University,et al.  THE SEGUE STELLAR PARAMETER PIPELINE. II. VALIDATION WITH GALACTIC GLOBULAR AND OPEN CLUSTERS , 2007, 0710.5778.

[20]  David Schlegel,et al.  The Milky Way Tomography with SDSS. I. Stellar Number Density Distribution , 2005, astro-ph/0510520.

[21]  Peter B. Stetson,et al.  FIDUCIAL STELLAR POPULATION SEQUENCES FOR THE u′g′r′i′z′ SYSTEM , 2007, 0711.4045.

[22]  Australian National University,et al.  THE SEGUE STELLAR PARAMETER PIPELINE. I. DESCRIPTION AND COMPARISON OF INDIVIDUAL METHODS , 2007, 0710.5645.

[23]  M. J. Astrophysik,et al.  Masses for the Local Group and the Milky Way , 2007, 0710.3740.

[24]  Sergey E. Koposov,et al.  Accepted for publication in ApJ Preprint typeset using L ATEX style emulateapj v. 02/07/07 THE DISCOVERY OF TWO EXTREMELY LOW LUMINOSITY MILKY WAY GLOBULAR CLUSTERS , 2022 .

[25]  N. F. Martin,et al.  A Keck/DEIMOS spectroscopic survey of faint Galactic satellites: searching for the least massive dwarf galaxies , 2007, 0705.4622.

[26]  J. F. Navarro,et al.  Cosmic ménage à trois: the origin of satellite galaxies on extreme orbits , 2007, 0704.1773.

[27]  Sergey E. Koposov,et al.  submitted to the Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE HERCULES-AQUILA CLOUD , 2007 .

[28]  Z. Jin,et al.  GRB 060418 and 060607A: the medium surrounding the progenitor and the weak reverse shock emission , 2007, astro-ph/0701715.

[29]  Sergey E. Koposov,et al.  submitted to The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 6/22/04 CATS AND DOGS, HAIR AND A HERO: A QUINTET OF NEW MILKY WAY COMPANIONS † , 2022 .

[30]  D. York,et al.  An Orphan in the “Field of Streams” , 2006, astro-ph/0605705.

[31]  K. Cunha,et al.  A 2MASS All-Sky View of the Sagittarius Dwarf Galaxy. V. Variation of the Metallicity Distribution Function along the Sagittarius Stream , 2006, astro-ph/0605101.

[32]  Fnal,et al.  Is Ursa Major II the Progenitor of the Orphan Stream , 2006, astro-ph/0611157.

[33]  S. Phleps,et al.  CADIS has seen the Virgo overdensity and parts of the Monoceros and “Orphan” streams in retrospect , 2006, astro-ph/0607445.

[34]  Subaru Telescope,et al.  A Curious Milky Way Satellite in Ursa Major , 2006, astro-ph/0606633.

[35]  Princeton,et al.  The Field of Streams: Sagittarius and Its Siblings , 2006, astro-ph/0605025.

[36]  M. Steinmetz,et al.  Stars beyond galaxies: the origin of extended luminous haloes around galaxies , 2005, astro-ph/0506659.

[37]  A. Helmi,et al.  The radial velocity dispersion profile of the Galactic halo : constraining the density profile of the dark halo of the Milky Way , 2005, astro-ph/0506102.

[38]  Andrew A. West,et al.  A New Milky Way Companion: Unusual Globular Cluster or Extreme Dwarf Satellite? , 2004, astro-ph/0410416.

[39]  S. Majewski,et al.  A Two Micron All-Sky Survey View of the Sagittarius Dwarf Galaxy. IV. Modeling the Sagittarius Tidal Tails , 2004, astro-ph/0407566.

[40]  S. Majewski,et al.  A Two Micron All Sky Survey View of the Sagittarius Dwarf Galaxy. III. Constraints on the Flattening of the Galactic Halo , 2004, astro-ph/0407565.

[41]  Amina Helmi,et al.  Velocity Trends in the Debris of Sagittarius and the Shape of the Dark Matter Halo of Our Galaxy , 2004, astro-ph/0406396.

[42]  S. Majewski,et al.  Detection of the Main-Sequence Turnoff of a Newly Discovered Milky Way Halo Structure in the Triangulum-Andromeda Region , 2004, astro-ph/0406221.

[43]  David G. Monet,et al.  An Improved Proper-Motion Catalog Combining USNO-B and the Sloan Digital Sky Survey , 2004 .

[44]  M. F. Skrutskie,et al.  A Two Micron All Sky Survey View of the Sagittarius Dwarf Galaxy. I. Morphology of the Sagittarius Core and Tidal Arms , 2003, astro-ph/0304198.

[45]  D. Lamb,et al.  A Low-Latitude Halo Stream around the Milky Way , 2003, astro-ph/0301029.

[46]  Heather A. Rave,et al.  The Ghost of Sagittarius and Lumps in the Halo of the Milky Way , 2001, astro-ph/0111095.

[47]  Rachel S. Somerville,et al.  ΛCDM-based Models for the Milky Way and M31. I. Dynamical Models , 2001, astro-ph/0110390.

[48]  S. O. Physics,et al.  The SuperCOSMOS Sky Survey – I. Introduction and description , 2001, astro-ph/0108286.

[49]  D. York,et al.  Identification of A-colored Stars and Structure in the Halo of the Milky Way from Sloan Digital Sky Survey Commissioning Data , 2000, astro-ph/0004128.

[50]  N. Evans,et al.  The present and future mass of the Milky Way halo , 1999, astro-ph/9906197.

[51]  T. Beers,et al.  Spectroscopy of Hot Stars in the Galactic Halo. II. The Identification and Classification of Horizontal-Branch and Other A-Type Stars , 1999 .

[52]  J. Dubinski,et al.  Determining the Galactic Mass Distribution Using Tidal Streams from Globular Clusters , 1999, astro-ph/9902226.

[53]  Stefan Gottloeber,et al.  Galaxies in N-Body Simulations: Overcoming the Overmerging Problem , 1997, astro-ph/9708191.

[54]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[55]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[56]  William E. Harris,et al.  A Catalog of Parameters for Globular Clusters in the Milky Way , 1996 .

[57]  S. White,et al.  The Structure of cold dark matter halos , 1995, astro-ph/9508025.