Toward a High Performance Tile Divide and Conquer Algorithm for the Dense Symmetric Eigenvalue Problem
暂无分享,去创建一个
[1] J. Cuppen. A divide and conquer method for the symmetric tridiagonal eigenproblem , 1980 .
[2] Peter Arbenz,et al. Divide and conquer algorithms for the bandsymmetric eigenvalue problem , 1992, Parallel Computing.
[3] J. Bunch,et al. Rank-one modification of the symmetric eigenproblem , 1978 .
[4] James Demmel,et al. Algorithm 880: A testing infrastructure for symmetric tridiagonal eigensolvers , 2008, TOMS.
[5] W. Gander,et al. Restricted rank modification of the symmetric eigenvalue problem: Theoretical considerations , 1988 .
[6] Notker Rösch,et al. ParaGauss: The Density Functional Program ParaGauss for Complex Systems in Chemistry , 2005 .
[7] Jack Dongarra,et al. Parallelizing the Divide and Conquer Algorithm for the SymmetricTridiagonal Eigenvalue Problem on Distributed Memory Architectures , 1998 .
[8] Jack Dongarra,et al. Fully Dynamic Scheduler for Numerical Computing on Multicore Processors , 2009 .
[9] Robert A. van de Geijn,et al. Scheduling of QR Factorization Algorithms on SMP and Multi-Core Architectures , 2008, 16th Euromicro Conference on Parallel, Distributed and Network-Based Processing (PDP 2008).
[10] Christian H. Bischof,et al. Algorithm 807: The SBR Toolbox—software for successive band reduction , 2000, TOMS.
[11] Stanley C. Eisenstat,et al. A Divide-and-Conquer Algorithm for the Symmetric Tridiagonal Eigenproblem , 1995, SIAM J. Matrix Anal. Appl..
[12] R. C. Thompson. The behavior of eigenvalues and singular values under perturbations of restricted rank , 1976 .
[13] Philipp Birken,et al. Numerical Linear Algebra , 2011, Encyclopedia of Parallel Computing.
[14] Jeffery D. Rutter. A Serial Implementation of Cuppen''s Divide and Conquer Algorithm , 1991 .
[15] G. Golub,et al. On the spectral decomposition of Hermitian matrices modified by low rank perturbations , 1988 .
[16] Jack Dongarra,et al. QR Factorization for the CELL Processor , 2008 .
[17] Jack J. Dongarra,et al. A Parallel Divide and Conquer Algorithm for the Symmetric Eigenvalue Problem on Distributed Memory Architectures , 1999, SIAM J. Sci. Comput..
[18] Emmanuel Agullo,et al. Comparative study of one-sided factorizations with multiple software packages on multi-core hardware , 2009, Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis.
[19] Jack J. Dongarra,et al. A fully parallel algorithm for the symmetric eigenvalue problem , 1985, PPSC.
[20] Horst D. Simon,et al. The solution of large dense generalized eigenvalue problems on the Cray X-MP/24 with SSD , 1987 .
[21] B. Parlett,et al. Multiple representations to compute orthogonal eigenvectors of symmetric tridiagonal matrices , 2004 .
[22] Robert A. van de Geijn,et al. SuperMatrix: a multithreaded runtime scheduling system for algorithms-by-blocks , 2008, PPoPP.
[23] Christoph W. Ueberhuber,et al. A Low-Complexity Divide-and-Conquer Method for Computing Eigenvalues and Eigenvectors of Symmetric Band Matrices , 2001 .
[24] J. H. Wilkinson. The algebraic eigenvalue problem , 1966 .
[25] I. Dhillon. Algorithm for the Symmetric Tridiagonal Eigenvalue/Eigenvector Problem , 1998 .
[26] Matemática,et al. Society for Industrial and Applied Mathematics , 2010 .
[27] Gene H. Golub,et al. Matrix computations , 1983 .
[28] Jack Dongarra,et al. QR factorization for the Cell Broadband Engine , 2009, HiPC 2009.
[29] Wilfried N. Gansterer,et al. An extension of the divide-and-conquer method for a class of symmetric block-tridiagonal eigenproblems , 2002, TOMS.
[30] James Demmel,et al. Applied Numerical Linear Algebra , 1997 .
[31] James Demmel,et al. Performance and Accuracy of LAPACK's Symmetric Tridiagonal Eigensolvers , 2008, SIAM J. Sci. Comput..
[32] Robert A. van de Geijn,et al. Updating an LU Factorization with Pivoting , 2008, TOMS.
[33] Peter Arbenz,et al. Parallel divide and conquer algorithms for the symmetric tridiagonal eigenproblem , 1994 .
[34] Ilse C. F. Ipsen,et al. Solving the Symmetric Tridiagonal Eigenvalue Problem on the Hypercube , 1990, SIAM J. Sci. Comput..
[35] Robert C. Ward,et al. A parallel symmetric block-tridiagonal divide-and-conquer algorithm , 2007, TOMS.
[36] D. Sorensen,et al. On the orthogonality of eigenvectors computed by divide-and-conquer techniques , 1991 .
[37] Inderjit S. Dhillon,et al. The design and implementation of the MRRR algorithm , 2006, TOMS.
[38] R. Martin,et al. Electronic Structure: Basic Theory and Practical Methods , 2004 .
[39] Gene H. Golub,et al. Matrix computations (3rd ed.) , 1996 .
[40] Jack Dongarra,et al. LAPACK Users' Guide, 3rd ed. , 1999 .
[41] Gene H. Golub,et al. Some modified matrix eigenvalue problems , 1973, Milestones in Matrix Computation.
[42] Julien Langou,et al. A Class of Parallel Tiled Linear Algebra Algorithms for Multicore Architectures , 2007, Parallel Comput..
[43] David Padua,et al. Encyclopedia of Parallel Computing , 2011 .
[44] Jeffery D. Rutter. LAPACK Working Note 69: A Serial Implementation of Cuppen''s Divide and Conquer Algorithm for the Symmetric Eigenvalue Problem , 1994 .
[45] Jack J. Dongarra,et al. Solving Systems of Linear Equations on the CELL Processor Using Cholesky Factorization , 2008, IEEE Transactions on Parallel and Distributed Systems.
[46] Wilfried N. Gansterer,et al. Computing Approximate Eigenpairs of Symmetric Block Tridiagonal Matrices , 2003, SIAM J. Sci. Comput..