High performance Ni–Fe alloy supported SOFCs fabricated by low cost tape casting-screen printing-cofiring process

[1]  Lucun Guo,et al.  Effect of titania concentration on the grain boundary conductivity of Ce0.8Gd0.2O1.9 electrolyte , 2012 .

[2]  X. Ge,et al.  Fabrication and Characterization of Anode‐Supported Low‐Temperature SOFC Based on Gd‐Doped Ceria Electrolyte , 2012 .

[3]  A. Weber,et al.  Manufacturing and characterization of metal-supported solid oxide fuel cells , 2011 .

[4]  T. Ishihara,et al.  Reoxidation behavior of Ni–Fe bimetallic anode substrate in solid oxide fuel cells using a thin LaGaO3 based film electrolyte , 2011 .

[5]  M. Mogensen,et al.  Metal-Supported SOFC with Ceramic-Based Anode , 2011 .

[6]  Mark Selby,et al.  Development of Highly Robust, Volume-Manufacturable Metal-Supported SOFCs for Operation Below 600° , 2011 .

[7]  E. Wachsman,et al.  Dependence of open-circuit potential and power density on electrolyte thickness in solid oxide fuel , 2011 .

[8]  S. Chan,et al.  Effects of transition metal oxides on the densification of thin-film GDC electrolyte and on the performance of intermediate-temperature SOFC , 2010 .

[9]  Michael C. Tucker,et al.  Progress in metal-supported solid oxide fuel cells: A review , 2010 .

[10]  L. Jian,et al.  A cost-effective process for fabrication of metal-supported solid oxide fuel cells , 2010 .

[11]  Yeong Yoo,et al.  Fabrication of Cerium Oxide based SOFC having a Porous Stainless Steel Support , 2009, ECS Transactions.

[12]  G. Choi,et al.  Ceria Film Supported on Ni-Fe Metal Film , 2009 .

[13]  Mogens Bjerg Mogensen,et al.  Redox stability of SOFC: Thermal analysis of Ni-YSZ composites , 2009 .

[14]  Asif Ansar,et al.  High temperature water electrolysis using metal supported solid oxide electrolyser cells (SOEC) , 2009 .

[15]  M. Tucker,et al.  Metal-Supported Solid Oxide Fuel Cells , 2008 .

[16]  H. Matsumoto,et al.  Ni–Fe Alloy-Supported Intermediate Temperature SOFCs Using LaGaO3 Electrolyte Film for Quick Startup , 2008 .

[17]  M. Gazda,et al.  Evaluation of porous 430L stainless steel for SOFC operation at intermediate temperatures , 2008 .

[18]  K. Choy,et al.  The electrochemical properties of LSM-based cathodes fabricated by electrostatic spray assisted vapour deposition , 2008 .

[19]  J. Bae,et al.  Fabrication and characterization of metal-supported solid oxide fuel cells , 2008 .

[20]  Rudolf Henne,et al.  Solid Oxide Fuel Cells: A Challenge for Plasma Deposition Processes , 2007 .

[21]  Zhenwei Wang,et al.  Metal-supported solid oxide fuel cell operated at 400–600 °C , 2007 .

[22]  H. Matsumoto,et al.  Ni–Fe bimetallic anode as an active anode for intermediate temperature SOFC using LaGaO3 based electrolyte film , 2006 .

[23]  M. Inaba,et al.  Porous metal tubular support for solid oxide fuel cell design , 2006 .

[24]  L. D. Jonghe,et al.  Metal-supported solid oxide fuel cell membranes for rapid thermal cycling , 2005 .

[25]  Naijuan Wu,et al.  Thin-film heterostructure solid oxide fuel cells , 2004 .

[26]  B. Chi,et al.  High performance La0.8Sr0.2MnO3-coated Ba0.5Sr0.5Co0.8Fe0.2O3 cathode prepared by a novel solid-solution method for intermediate temperature solid oxide fuel cells , 2014 .

[27]  E. Wachsman,et al.  Effect of Ni-Gd0.1Ce0.9O1.95 Anode Functional Layer Composition on Performance of Lower Temperature SOFCs , 2012 .

[28]  S. Chan,et al.  Fabrication and evaluation of Ni-GDC composite anode prepared by aqueous-based tape casting method for low-temperature solid oxide fuel cell , 2010 .

[29]  Anil V. Virkar,et al.  Bimetallic (Ni-Fe) anode-supported solid oxide fuel cells with gadolinia-doped ceria electrolyte , 2009 .