Linear and nonlinear hearing aid fittings – 1. Patterns of benefit

We evaluated the benefits of fast-acting WDRC, slow-acting AVC, and linear reference fittings for speech intelligibility and reported disability, in a within-subject within-device masked crossover design on 50 listeners with SNHL. Five hearing aid fittings were implemented having two compression channels and seven frequency bands. Each listener sequentially experienced each fitting for a 10-week period. Outcome measures included speech intelligibility under diverse conditions and self-reported disability. At a group level, each nonlinear fitting was superior to the linear references for benefits in listening comfort, listener satisfaction, reported intelligibility and speech intelligibility. Slow-acting AVC outperformed the fast-acting WDRC fittings for listening comfort, while for reported and measured speech intelligibility the converse was true. For listener satisfaction there were no group differences between the nonlinear fittings. Analysis in terms of fittings for individual listeners revealed subsets with definite divergences from the group data and hence a need for candidature criteria. There are systematic differences between the benefits of nonlinear and linear fittings, and also within nonlinear fittings with fast versus slow time constants. The patterns of benefit and individual optima depend on the domain of outcome being assessed. Sumario Evaluamos en cincuenta sujetos con SNHL los beneficios sobre la inteligibilidad del lenguaje de adaptaciones de auxiliares auditivos con WDRC de acción rápida, con AVC de acción lenta y con referencia lineal, así como la discapacidad reportada, con un diseño de enmascaramiento cruzado que permite juzgar las diferencias intra-sujeto y en función del propio dispositivo. Se implementaron cinco adaptaciones con dos canales de compresión y siete bandas de frecuencia. Cada sujeto utilizó secuencialmente las diferentes adaptaciones durante un período de diez semanas. Las medidas de resultado incluyeron inteligibilidad del lenguaje bajo diversas condiciones y la discapacidad auto-reportada. La adaptación con AVC de acción lenta superó la de WDRC de acción rápida en relación con la comodidad para escuchar, aunque para la inteligibilidad del lenguaje, tanto medida como reportada, ocurrió lo contrario. En relación con la satisfacción del sujeto, no existieron diferencias de grupo entre las adaptaciones no lineales. El análisis, en términos en adaptaciones para sujetos individuales, reveló sub-grupos con divergencias definitivas en relación a los datos grupales, y por tanto, la necesidad de establecer criterios para la selección de candidatos. Existen diferencias sistemáticas entre los beneficios de las adaptaciones lineales y no lineales, así como entre las adaptaciones no lineales y las constantes temporales rápidas versus las lentas. El patrón de beneficio y de optimización individual depende del ámbito de resultado bajo escrutinio.

[1]  Wouter A. Dreschler,et al.  ICRA Noises: Artificial Noise Signals with Speech-like Spectral and Temporal Properties for Hearing Instrument Assessment: Ruidos ICRA: Señates de ruido artificial con espectro similar al habla y propiedades temporales para pruebas de instrumentos auditivos , 2001 .

[2]  G Keidser Selecting different amplification for different listening conditions. , 1996, Journal of the American Academy of Audiology.

[3]  D. Markle,et al.  Hearing Aids , 1936, The Journal of Laryngology & Otology.

[4]  H Levitt,et al.  Effect of release time in compression hearing aids: paired-comparison judgments of quality. , 1995, The Journal of the Acoustical Society of America.

[5]  C Elberling,et al.  A Digital Filterbank Hearing Aid: Predicting User Preference And Performance For Two Signal Processing Algorithms , 1997, Ear and hearing.

[6]  G Keidser,et al.  Candidates for Multiple Frequency Response Characteristics , 1995, Ear and hearing.

[7]  H Levitt,et al.  The effect of compression ratio and release time on the categorical rating of sound quality. , 1998, The Journal of the Acoustical Society of America.

[9]  R M Cox,et al.  Maturation of hearing aid benefit: objective and subjective measurements. , 1992, Ear and hearing.

[10]  Ruth A. Bentler,et al.  Assessing Release-Time Options in a Two-Channel AGC Hearing Aid , 1997 .

[11]  M C Martin,et al.  Is AGC beneficial in hearing aids? , 1984, British journal of audiology.

[12]  G Naylor Technical and audiological factors in the implementation and use of digital signal processing hearing aids. , 1997, Scandinavian audiology.

[13]  M. Palmer Clinical Trials: A Practical Approach , 1985 .

[14]  R A Bentler,et al.  Effects of release time and directionality on unilateral and bilateral hearing aid fittings in complex sound fields. , 2001, Journal of the American Academy of Audiology.

[15]  R A Bentler,et al.  The effect of test signal type and bandwidth on the categorical scaling of loudness. , 1996, The Journal of the Acoustical Society of America.

[16]  B C Moore,et al.  A comparison of four methods of implementing automatic gain control (AGC) in hearing aids. , 1988, British journal of audiology.

[17]  L B Jerlvall,et al.  The influence of attack time and release time on speech intelligibility. A study of the effects of AGC on normal hearing and hearing impaired subjects. , 1978, Scandinavian audiology. Supplementum.

[18]  R M Cox,et al.  Composite speech spectrum for hearing and gain prescriptions. , 1988, Journal of speech and hearing research.

[19]  Stuart Gatehouse,et al.  Glasgow Hearing Aid Benefit Profile: Derivation and Validation of a Client-centered Outcome Measure for Hearing Aid Services , 1999 .

[20]  H. Dillon,et al.  Guidelines for fitting multiple memory hearing aids. , 1996, Journal of the American Academy of Audiology.

[21]  S Gatehouse,et al.  Apparent auditory deprivation effects of late onset: the role of presentation level. , 1989, The Journal of the Acoustical Society of America.

[22]  R M Cox,et al.  Measuring Satisfaction with Amplification in Daily Life: the SADL scale. , 1999, Ear and hearing.

[23]  V Pluvinage,et al.  Evaluation of a dual-channel full dynamic range compression system for people with sensorineural hearing loss. , 1992, Ear and hearing.

[24]  Martin Hansen Effects of Multi-Channel Compression Time Constants on Subjectively Perceived Sound Quality and Speech Intelligibility , 2002, Ear and hearing.

[25]  C Elberling Loudness scaling revisited. , 1999, Journal of the American Academy of Audiology.

[26]  Graham Naylor,et al.  Linear and nonlinear hearing aid fittings – 2. Patterns of candidature , 2006, International journal of audiology.

[27]  R. M. Cox,et al.  Administration And Application Of The APHAB , 1997 .

[28]  Graham Naylor,et al.  Benefits from hearing aids in relation to the interaction between the user and the environment , 2003, International journal of audiology.

[29]  S Gatehouse,et al.  Role of perceptual acclimatization in the selection of frequency responses for hearing aids. , 1993, Journal of the American Academy of Audiology.

[30]  B C Moore,et al.  Effect on the speech reception threshold in noise of the recovery time of the compressor in the high-frequency channel of a two-channel aid. , 1993, Scandinavian audiology. Supplementum.

[31]  I V Nábĕlek,et al.  A comparison of hearing aids with amplitude compression. , 1977, Audiology : official organ of the International Society of Audiology.

[32]  M P Haggard,et al.  The four alternative auditory feature test (FAAF)--linguistic and psychometric properties of the material with normative data in noise. , 1987, British journal of audiology.

[33]  Robyn M. Cox,et al.  The Abbreviated Profile of Hearing Aid Benefit , 1995, Ear and hearing.

[34]  R C Seewald,et al.  The input/output formula: a theoretical approach to the fitting of personal amplification devices. , 1995, The Journal of the Acoustical Society of America.

[35]  John C. Ellison,et al.  Effect of release time on preferred gain and speech acoustics. , 2004, Journal of the American Academy of Audiology.

[36]  G D Causey,et al.  The relative importance of recovery time in compression hearing aids. , 1977, Audiology : official organ of the International Society of Audiology.

[37]  H. Dillon,et al.  Gain, frequency response, and maximum output requirements for hearing aids. , 1996, Journal of rehabilitation research and development.

[38]  H. Dillon,et al.  The National Acoustic Laboratories' (NAL) New Procedure for Selecting the Gain and Frequency Response of a Hearing Aid , 1986, Ear and hearing.

[39]  B C Moore,et al.  Comparison of different forms of compression using wearable digital hearing aids. , 1999, The Journal of the Acoustical Society of America.

[40]  Michael Valente,et al.  The Independent Hearing Aid Fitting Forum (IHAFF) Protocol , 1997, Trends in amplification.

[41]  T Lunner,et al.  A Digital Filterbank Hearing Aid: Three Digital Signal Processing Algorithms‐User Preference and Performance , 1997, Ear and hearing.

[42]  G Keidser,et al.  NAL-NL1 procedure for fitting nonlinear hearing aids: characteristics and comparisons with other procedures. , 2001, Journal of the American Academy of Audiology.

[43]  S Gatehouse,et al.  Components and Determinants of Hearing Aid Benefit , 1994, Ear and hearing.

[44]  Brian C. J. Moore,et al.  The effect on speech intelligibility of varying compression time constants in a digital hearing aid , 2004, International journal of audiology.

[45]  W. Noble,et al.  The Speech, Spatial and Qualities of Hearing Scale (SSQ) , 2004, International journal of audiology.

[46]  Recommended procedures for pure-tone audiometry using a manually operated instrument. , 1981, The Journal of laryngology and otology.

[47]  Robyn M. Cox,et al.  Using Loudness Data for Hearing Aid Selection: The IHAFF Approach , 1995 .

[48]  James M. Kates,et al.  Digital hearing aids. , 2008, Harvard health letter.

[49]  W. Noble Self-assessment of hearing and related functions , 1998 .

[50]  A Gabrielsson,et al.  Perceived sound quality of hearing aids. , 1979, Scandinavian audiology.

[51]  H Dillon Tutorial Compression? Yes, But for Low or High Frequencies, for Low or High Intensities, and with What Response Times? , 1996, Ear and hearing.

[52]  W. Dreschler,et al.  ICRA noises: artificial noise signals with speech-like spectral and temporal properties for hearing instrument assessment. International Collegium for Rehabilitative Audiology. , 2001, Audiology : official organ of the International Society of Audiology.