The synthesis of rhodium substituted ε-iron oxide exhibiting super high frequency natural resonance

In this study, we demonstrate a synthesis of rhodium substituted e-iron oxide, e-RhxFe2−xO3 (0 ≤ x ≤ 0.19), nanoparticles in silica. The synthesis features a sol–gel method to coat the metal hydroxide sol containing Fe3+ and Rh3+ ions with a silica sol via hydrolysis of alkoxysilane to form a composite gel. The obtained samples are barrel-shaped nanoparticles with average long- and short-axial lengths of approximately 30 nm and 20 nm, respectively. The crystallographic structure study using X-ray diffraction shows that e-RhxFe2−xO3 has an orthorhombic crystal structure in the Pna21 space group. Among the four non-equivalent substitution sites (A–D sites), Rh3+ ions mainly substitute into the C sites. The formation mechanism of e-RhxFe2−xO3 nanoparticles is considered to be that the large surface area of the nanoparticles increases the contribution from the surface energy to Gibbs free energy, resulting in a different phase, e-phase, becoming the most stable phase compared to that of bulk or single crystal. The measured electromagnetic wave absorption characteristics due to natural resonance (zero-field ferromagnetic resonance) using terahertz time domain spectroscopy reveal that the natural resonance frequency shifts from 182 GHz (e-Fe2O3) to 222 GHz (e-Rh0.19Fe1.81O3) upon rhodium substitution. This is the highest natural resonance frequency of a magnetic material, and is attributed to the large magnetic anisotropy due to rhodium substitution. The estimated coercive field for e-Rh0.19Fe1.81O3 is as large as 28 kOe.

[1]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[2]  L. Hench,et al.  The sol-gel process , 1990 .

[3]  A. Dent,et al.  Sodium and silver environments and ion-exchange processes in silicate and aluminosilicate glasses , 1993 .

[4]  A. Navrotsky,et al.  Surface Energies and Thermodynamic Phase Stability in Nanocrystalline Aluminas , 1997 .

[5]  M. Matsumoto,et al.  Thin electromagnetic wave absorber for quasi-microwave band containing aligned thin magnetic metal particles , 1997 .

[6]  J. Banfield,et al.  Thermodynamic analysis of phase stability of nanocrystalline titania , 1998 .

[7]  E. Tronc,et al.  Structural and Magnetic Characterization ofε-Fe2O3 , 1998 .

[8]  H. Wen,et al.  Size characterization of θ- and α-Al2O3 crystallites during phase transformation , 1999 .

[9]  S. Sugimoto,et al.  M-type ferrite composite as a microwave absorber with wide bandwidth in the GHz range , 1999, IEEE International Magnetics Conference.

[10]  R. Lai,et al.  An indium phosphide MMIC amplifier for 180-205 GHz , 2001, IEEE Microwave and Wireless Components Letters.

[11]  M. Urteaga,et al.  G-band (140-220-GHz) InP-based HBT amplifiers , 2003, IEEE J. Solid State Circuits.

[12]  K. Hashimoto,et al.  Giant Coercive Field of Nanometer‐ Sized Iron Oxide , 2004 .

[13]  C. O'connor,et al.  Recent advances in the liquid-phase syntheses of inorganic nanoparticles. , 2004, Chemical reviews.

[14]  A. Roig,et al.  Optimized Synthesis of the Elusive ε-Fe2O3 Phase via Sol−Gel Chemistry , 2004 .

[15]  R. Lawrence,et al.  Conductive Carbon Nanofiber–Polymer Foam Structures , 2005 .

[16]  K. Hashimoto,et al.  The addition effects of alkaline earth ions in the chemical synthesis of ε-Fe2O3 nanocrystals that exhibit a huge coercive field , 2005 .

[17]  R. Grundbacher,et al.  Beyond G-band: a 235 GHz InP MMIC amplifier , 2005, IEEE Microwave and Wireless Components Letters.

[18]  S. Vilminot,et al.  Formation of Nanoparticles of ε-Fe2O3 from Yttrium Iron Garnet in a Silica Matrix: An Unusually Hard Magnet with a Morin-Like Transition below 150 K , 2005 .

[19]  E. Tronc,et al.  Spin collinearity and thermal disorder in ε-Fe2O3 , 2005 .

[20]  K. Kelm,et al.  Synthesis and Structural Analysis of ?-Fe2O3. , 2005 .

[21]  K. Hashimoto,et al.  Formation of spherical and rod-shaped ε-Fe2O3 nanocrystals with a large coercive field , 2005 .

[22]  S. Yoon,et al.  Oriented barium hexaferrite thick films with narrow ferromagnetic resonance linewidth , 2006 .

[23]  K. Yano,et al.  Novel synthesis of highly monodispersed γ-Fe2O3/SiO2 and ε-Fe2O3/SiO2 nanocomposite spheres , 2006 .

[24]  K. Hashimoto,et al.  Synthesis, Crystal Structure, and Magnetic Properties of ϵ‐InxFe2–xO3 Nanorod‐Shaped Magnets , 2007 .

[25]  F. Izumi,et al.  Three-Dimensional Visualization in Powder Diffraction , 2007 .

[26]  S. Ohkoshi,et al.  A Millimeter‐Wave Absorber Based on Gallium‐Substituted ε‐Iron Oxide Nanomagnets , 2007 .

[27]  Yongsheng Chen,et al.  Reflection and absorption contributions to the electromagnetic interference shielding of single-walled carbon nanotube/polyurethane composites , 2007 .

[28]  José Capmany,et al.  Microwave photonics combines two worlds , 2007 .

[29]  J. Takada,et al.  Epitaxial Growth of ϵ-Fe2O3 on Mullite Found through Studies on a Traditional Japanese Stoneware , 2008 .

[30]  R. Zbořil,et al.  Polymorphous Exhibitions of Iron(III) Oxide during Isothermal Oxidative Decompositions of Iron Salts: A Key Role of the Powder Layer Thickness , 2008 .

[31]  A. Gedanken,et al.  Investigations on the Structural, Morphological, Electrical, and Magnetic Properties of CuFe2O4−NiO Nanocomposites , 2008 .

[32]  M. Nakajima,et al.  Synthesis of an electromagnetic wave absorber for high-speed wireless communication. , 2009, Journal of the American Chemical Society.

[33]  K. Hashimoto,et al.  First observation of phase transformation of all four Fe(2)O(3) phases (gamma --> epsilon --> beta --> alpha-phase). , 2009, Journal of the American Chemical Society.

[34]  J. Tuček,et al.  ε-Fe2O3: An Advanced Nanomaterial Exhibiting Giant Coercive Field, Millimeter-Wave Ferromagnetic Resonance, and Magnetoelectric Coupling , 2010 .

[35]  K. Hashimoto,et al.  Synthesis of a metal oxide with a room-temperature photoreversible phase transition. , 2010, Nature chemistry.

[36]  Jiurong Liu,et al.  Template free synthesis and electromagnetic wave absorption properties of monodispersed hollow magnetite nano-spheres , 2011 .

[37]  K. Korolev,et al.  Ferromagnetic resonance of micro- and nano-sized hexagonal ferrite powders at millimeter waves , 2012 .

[38]  M. Nakajima,et al.  Hard magnetic ferrite with a gigantic coercivity and high frequency millimetre wave rotation , 2012, Nature Communications.

[39]  Willie J Padilla,et al.  Metamaterial Electromagnetic Wave Absorbers , 2012, Advanced materials.

[40]  Xiaohong Wu,et al.  Electric field-induced synthesis of dendritic nanostructured α-Fe for electromagnetic absorption application , 2013 .