Theoretical tensile strength of an Al grain boundary

The ab initio tensile test has been applied to an Al \ensuremath{\Sigma}9 grain boundary by using the ab initio pseudopotential method. The theoretical tensile strength is 9.50 GPa at the strain 21%. As compared with the theoretical tensile strength in the direction [001] or [111] of an Al single crystal, the boundary is still strong due to the interface reconstruction. The interface extends at almost the same rate with the bulk interlayer until the strain of 19% in spite of the reduced number of interfacial bonds, which indicates the special strength of the reconstructed bonds. This feature can be regarded as a typical property of Al that strong local bonds are formed for less-coordinated atoms at defects.

[1]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[2]  D. Roundy,et al.  Electronic properties and ideal tensile strength of MoSe nanowires , 2002 .

[3]  David Roundy,et al.  Ideal strength of bcc molybdenum and niobium , 2002 .

[4]  M. Kohyama,et al.  Ab initio study on divacancy binding energies in aluminum and magnesium , 2003 .

[5]  Leonard Kleinman,et al.  Efficacious Form for Model Pseudopotentials , 1982 .

[6]  Weixue Li,et al.  Elasticity, stability, and ideal strength of beta-SiC in plane-wave-based ab initio calculations , 1998, cond-mat/9812116.

[7]  L. Kleinman,et al.  Self-consistent calculations of the energy bands and bonding properties of B sub 12 C sub 3 , 1990 .

[8]  P. Lam,et al.  Ab initio calculation of the static structural properties of Al , 1981 .

[9]  Deyirmenjian,et al.  Ab initio atomistic simulation of the strength of defective aluminum and tests of empirical force models. , 1995, Physical Review B (Condensed Matter).

[10]  Nielsen,et al.  Erratum: Quantum-mechanical theory of stress and force , 1987, Physical review. B, Condensed matter.

[11]  N. Gane The direct measurement of the strength of metals on a sub-micrometre scale , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[12]  V. Vítek,et al.  The role of higher-symmetry phases in anisotropy of theoretical tensile strength of metals and intermetallics , 1998 .

[13]  M. Kohyama Tensile strength and fracture of a tilt grain boundary in cubic SiC : a first-principles study , 1999 .

[14]  D. Roundy,et al.  Ideal Shear Strengths of fcc Aluminum and Copper , 1999 .

[15]  Heine,et al.  First principles simulation of grain boundary sliding. , 1996, Physical Review Letters.

[16]  V. Vítek,et al.  Theoretical tensile stress in tungsten single crystals by full-potential first-principles calculations , 1997 .

[17]  M. Kohyama Ab initio study of the tensile strength and fracture of coincidence tilt boundaries in cubic SiC: Polar interfaces of the {122} Σ=9 boundary , 2002 .

[18]  Sidney Yip,et al.  Ideal Pure Shear Strength of Aluminum and Copper , 2002, Science.

[19]  Ryoichi Yamamoto,et al.  Effects of Impurities on an Al Grain Boundary , 2003 .

[20]  T. Arias,et al.  Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and co , 1992 .

[21]  M. Kohyama Ab initio calculations for SiC - Al interfaces: tests of electronic-minimization techniques , 1996 .

[22]  M. L. Cohen,et al.  The ideal strength of tungsten , 2001 .

[23]  J. Hoekstra,et al.  AB INITIO CALCULATIONS OF THE BETA -SIC(001)/AL INTERFACE , 1998 .

[24]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[25]  Ab initio Studies on the Effects of Si and S Impurities on Al Grain Boundary , 2001 .

[26]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.

[27]  Sandberg,et al.  Vacancies in metals: from first-principles calculations to experimental data , 2000, Physical review letters.

[28]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[29]  R. Yamamoto,et al.  First-principles pseudopotential study of an aluminium grain boundary containing sulphur atoms , 2003 .

[30]  J. Pokluda,et al.  Calculation of theoretical strength of solids by linear muffin-tin orbitals (LMTO) method , 1997 .

[31]  R. Yamamoto,et al.  Comparison of effects of sodium and silicon impurities on aluminium grain boundaries by first-principles calculation , 2000 .

[32]  B. Alder,et al.  THE GROUND STATE OF THE ELECTRON GAS BY A STOCHASTIC METHOD , 2010 .

[33]  N. Hirosaki,et al.  Anab initiocalculation of the ideal tensile strength of β-silicon nitride , 2001 .

[34]  R. Yamamoto,et al.  Ab initio pseudopotential studies on an Al Σ = 9 grain boundary: Effects of Na and Ca impurities , 2001 .

[35]  Allan,et al.  Solution of Schrödinger's equation for large systems. , 1989, Physical review. B, Condensed matter.

[36]  Martin,et al.  Quantum-mechanical theory of stress and force. , 1985, Physical review. B, Condensed matter.

[37]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[38]  Marvin L. Cohen,et al.  Ideal strength of diamond, Si, and Ge , 2001 .

[39]  J. W. Morris,et al.  Connecting atomistic and experimental estimates of ideal strength , 2002 .

[40]  V. Heine,et al.  Sliding mechanisms in aluminum grain boundaries , 1997 .

[41]  Warren E. Pickett,et al.  Pseudopotential methods in condensed matter applications , 1989 .

[42]  C. Krenn,et al.  The internal stability of an elastic solid , 2000 .

[43]  P. Feibelman,et al.  Diffusion path for an Al adatom on Al(001). , 1990, Physical review letters.

[44]  Ab initio investigation of the elasticity and stability of aluminium , 1998, cond-mat/9804046.

[45]  G. Kerker Efficient iteration scheme for self-consistent pseudopotential calculations , 1981 .

[46]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.