The semistate description of nonlinear time-variable circuits

It is shown that, by the possible use of circuit equivalences, circuits satisfying rather light assumptions possess the semistate description {\cal Q} \dot{x} + \cal B(x, t)= \cal D u y ={\cal F} x where u = input, y = output, x = semistate, and {\cal Q}, {\cal D} ,{\cal F} are constant operators. The semistate can be chosen as tree branch voltages and link branch currents; a determination of consistent initial semistates is given which stems from a forward stepping solution equation. An appropriate reduction with attendant signal-flow graph for design is obtained in the linear time-invariant case.

[1]  Leon O. Chua,et al.  On the Dynamic Equations of a Class of Nonlinear RLC Networks , 1965 .

[2]  B. D. Anderson,et al.  Useful time-variable circuit-element equivalences , 1965 .

[3]  Robert W. Newcomb,et al.  Linear multiport synthesis , 1966 .

[4]  L. P. Huelsman,et al.  State-Variable Synthesis for Insensitive Integrated Circuit Transfer Functions , 1967 .

[5]  H. Shichman,et al.  Modeling and simulation of insulated-gate field-effect transistor switching circuits , 1968 .

[6]  Leon O. Chua,et al.  Introduction to nonlinear network theory , 1969 .

[7]  R. W. Newcomb,et al.  Nonlinear-capacitor simulation , 1971 .

[8]  W. E. Heinlein,et al.  Active Filters for Integrated Circuits: Fundamentals and Design Methods , 1974 .

[9]  Stephen L. Campbell,et al.  Applications of the Drazin Inverse to Linear Systems of Differential Equations with Singular Constant Coefficients , 1976 .

[10]  R. Newcomb,et al.  Nonlinear differential systems: A canonic, multivariable theory , 1977, Proceedings of the IEEE.

[11]  I. Getreu,et al.  Modeling the bipolar transistor , 1978 .

[12]  H. Takata,et al.  Transformation of a nonlinear system into an augmented linear system , 1979 .

[13]  E. Sánchez-Sinencio,et al.  A nonlinear macromodel of operational amplifiers in the frequency domain , 1979 .

[14]  C. D. Meyer,et al.  Generalized inverses of linear transformations , 1979 .

[15]  S. Campbell A procedure for analyzing a class of nonlinear semistate equations that arise in circuit and control problems , 1981 .