Development of a Specific Finite Element for Timber Joint Modeling

Widely used for light frame structures or for heavy laminated wood structures, dowel-type fasteners are the most commonly used kind of connectors in timber construction. The purpose of this work is to develop a tool for the semi-rigid analysis and design of such joints. Firstly, interests and approaches described in literature for the semi-rigid modeling of timber plane frames are summarized. Secondly, for a better understanding of the problem, the main characteristics of wood used as a structural material are presented. Finally, a method for an efficient study of joints built with dowel-type fasteners is proposed and developed. This method consists of the introduction of a specific finite element called “Finite Semi-Rigid Element (FSRE)” between the ends of the jointed members. This joint element consists of two nodes, each with three degrees of freedom. These nodes will be tied with common beamelements during the FE analysis. The stiffness of the FSRE is computed from the geometry of the joints and embedding stiffness of all fasteners, along and perpendicular to the grain. The embedding characteristics of fasteners are defined with help of their experimental load-slip curves (fitted with Foschi's models) leading finally to the resolution of a FE non-linear problem.