Evidence for and mitigation of the encapsulation of gold nanoparticles within silica supports upon high-temperature treatment of Au/SiO2 catalysts: Implication to catalyst deactivation

[1]  J. Grunwaldt,et al.  Substrate size-selective catalysis with zeolite-encapsulated gold nanoparticles. , 2010, Angewandte Chemie.

[2]  P. Fornasiero,et al.  Embedded phases: a way to active and stable catalysts. , 2010, ChemSusChem.

[3]  J. Horton,et al.  Functionalized Mesostructured Silicas As Supports for Palladium Catalysts: Effect of Pore Structure and Collapse on Catalytic Activity in the Suzuki−Miyaura Reaction , 2010 .

[4]  C. Lamberti,et al.  Influence of K-doping on a Pd/SiO2-Al2O3 catalyst , 2009 .

[5]  Zili Wu,et al.  CO Oxidation on Au/FePO4 Catalyst: Reaction Pathways and Nature of Au Sites , 2009 .

[6]  Ben W. Glasspoole,et al.  Catalysis with chemically modified mesoporous silicas: Stability of the mesostructure under Suzuki–Miyaura reaction conditions , 2009 .

[7]  T. Akita,et al.  Preparation of ∼1 nm Gold Clusters Confined within Mesoporous Silica and Microwave-Assisted Catalytic Application for Alcohol Oxidation , 2009 .

[8]  E. Besson,et al.  Soft route for monodisperse gold nanoparticles confined within SH-functionalized walls of mesoporous silica , 2009 .

[9]  Chulhwan Park,et al.  Influences of synthesis conditions and mesoporous structures on the gold nanoparticles supported on mesoporous silica hosts , 2009 .

[10]  J. Majimel,et al.  Size-Dependent Stability of Supported Gold Nanostructures onto Ceria: an HRTEM Study , 2009 .

[11]  Lifang Chen,et al.  Intercalation of aggregation-free and well-dispersed gold nanoparticles into the walls of mesoporous silica as a robust "green" catalyst for n-alkane oxidation. , 2009, Journal of the American Chemical Society.

[12]  H. Yin,et al.  Metal Phosphates as a New Class of Supports for Gold Nanocatalysts , 2008 .

[13]  Avelino Corma,et al.  Supported gold nanoparticles as catalysts for organic reactions. , 2008, Chemical Society reviews.

[14]  L. Prati,et al.  Selective oxidation using gold. , 2008, Chemical Society reviews.

[15]  B. Gates,et al.  Catalysis by gold dispersed on supports: the importance of cationic gold. , 2008, Chemical Society reviews.

[16]  Suree Brown,et al.  Surface Modification of Au/TiO2 Catalysts by SiO2 via Atomic Layer Deposition , 2008 .

[17]  Shanshan Lv,et al.  Low-temperature CO oxidation over Au/ZnO/SiO2 catalysts : Some mechanism insights , 2008 .

[18]  O. Paris,et al.  Isolation of Mesoporous Biogenic Silica from the Perennial Plant Equisetum hyemale , 2008 .

[19]  V. Pârvulescu,et al.  Plasma-assisted catalysis total oxidation of trichloroethylene over gold nano-particles embedded in SBA-15 catalysts , 2007 .

[20]  Robert J. Davis,et al.  Understanding Au-Catalyzed Low-Temperature CO Oxidation , 2007 .

[21]  Z. Pan,et al.  Low-temperature CO oxidation on Au/fumed SiO2-based catalysts prepared from Au(en)2Cl3 precursor , 2007 .

[22]  Lifang Chen,et al.  Aerobic oxidation of alcohols catalyzed by gold nano-particles confined in the walls of mesoporous silica , 2007 .

[23]  C. Louis,et al.  Preparation of supported gold nanoparticles by a modified incipient wetness impregnation method. , 2006, The journal of physical chemistry. B.

[24]  C. Liang,et al.  Preparation of highly active silica-supported Au catalysts for CO oxidation by a solution-based technique. , 2006, The journal of physical chemistry. B.

[25]  Arturo Martínez-Arias,et al.  Model bimetallic Pd-Ni automotive exhaust catalysts : Influence of thermal aging and hydrocarbon self-poisoning , 2006 .

[26]  A. Corma,et al.  Synthesis and catalytic activity of periodic mesoporous materials incorporating gold nanoparticles , 2005 .

[27]  Daliang Zhang,et al.  A surface modification scheme for incorporation of nanocrystals in mesoporous silica matrix , 2005 .

[28]  D. Thompson,et al.  Commercial aspects of gold catalysis , 2005 .

[29]  Mool C. Gupta,et al.  Au/Fe2O3 nanocatalysts for CO oxidation: A comparative study of deposition–precipitation and coprecipitation techniques , 2005 .

[30]  S. Mahurin,et al.  Effect of supporting surface layers on catalytic activities of gold nanoparticles in CO oxidation. , 2005, The journal of physical chemistry. B.

[31]  Z. Pan,et al.  Ultrastable Au nanocatalyst supported on surface-modified TiO2 nanocrystals. , 2005, Journal of the American Chemical Society.

[32]  C. Mou,et al.  CO oxidation over gold nanocatalyst confined in mesoporous silica , 2005 .

[33]  R. Richards,et al.  Aerobic oxidation of cyclohexane by gold nanoparticles immobilized upon mesoporous silica , 2005 .

[34]  Xiaolai Wang,et al.  Gold nanoparticles in mesoporous materials showing catalytic selective oxidation cyclohexane using oxygen , 2005 .

[35]  J. Moulijn,et al.  The mechanism of low-temperature CO oxidation with Au/Fe2O3 catalysts : a combined Mossbauer, FT-IR, and TAP reactor study , 2005 .

[36]  M. Abrashev,et al.  Gold–vanadia catalysts supported on ceria–alumina for complete benzene oxidation , 2004 .

[37]  S. Mahurin,et al.  Brookite-supported highly stable gold catalytic system for CO oxidation. , 2004, Chemical communications.

[38]  R. Keiski,et al.  Effect of ageing atmosphere on the deactivation of Pd/Rh automotive exhaust gas catalysts: catalytic activity and XPS studies , 2004 .

[39]  S. Overbury,et al.  Comparison of Au Catalysts Supported on Mesoporous Titania and Silica: Investigation of Au Particle Size Effects and Metal-Support Interactions , 2004 .

[40]  Zongtao Zhang,et al.  Preparation of bicontinuous mesoporous silica and organosilica materials containing gold nanoparticles by co-synthesis method , 2004 .

[41]  M. Haruta,et al.  Vital role of moisture in the catalytic activity of supported gold nanoparticles. , 2004, Angewandte Chemie.

[42]  E. Hagaman,et al.  Surface sol-gel modification of mesoporous silica materials with TiO2 for the assembly of ultrasmall gold nanoparticles , 2004 .

[43]  G. Graham,et al.  Pd encapsulation in automotive exhaust-gas catalysts , 2003 .

[44]  A. P. Alivisatos,et al.  Encapsulation of Metal (Au, Ag, Pt) Nanoparticles into the Mesoporous SBA-15 Structure , 2003 .

[45]  S. Overbury,et al.  Coassembly Synthesis of Ordered Mesoporous Silica Materials Containing Au Nanoparticles , 2003 .

[46]  R. Kumar,et al.  Preparation and stabilization of gold nanoparticles formed by in situ reduction of aqueous chloroaurate ions within surface-modified mesoporous silica , 2003 .

[47]  G. Somorjai,et al.  Synthetic insertion of gold nanoparticles into mesoporous silica , 2003 .

[48]  S. C. Parker,et al.  The Effect of Size-Dependent Nanoparticle Energetics on Catalyst Sintering , 2002, Science.

[49]  A. Katz,et al.  Synthesis and Characterization of Gold−Silica Nanoparticles Incorporating a Mercaptosilane Core-Shell Interface , 2002 .

[50]  D. Goodman,et al.  Oxidation Catalysis by Supported Gold Nano-Clusters , 2002 .

[51]  Younan Xia,et al.  Synthesis and Self-Assembly of Au@SiO2 Core−Shell Colloids , 2002 .

[52]  A. E. O'Neill,et al.  Observation of Strained PdO in an Aged Pd/Ceria-Zirconia Catalyst , 2002 .

[53]  F. Schüth,et al.  A systematic study of the synthesis conditions for the preparation of highly active gold catalysts , 2002 .

[54]  Masatake Haruta,et al.  Advances in the catalysis of Au nanoparticles , 2001 .

[55]  Frank Caruso,et al.  Multilayer assemblies of silica-encapsulated gold nanoparticles on decomposable colloid templates. , 2001 .

[56]  C. Satriano,et al.  Catalytic combustion of volatile organic compounds on gold/cerium oxide catalysts , 2000 .

[57]  M. Haruta,et al.  Preparation of Supported Gold Catalysts by Liquid-Phase Grafting of Gold Acethylacetonate for Low-Temperature Oxidation of CO and of H2. , 2000 .

[58]  C. Louis,et al.  Catalysis By Gold , 1999 .

[59]  T. Tabakova,et al.  FTIR Study of the Low-Temperature Water–Gas Shift Reaction on Au/Fe2O3 and Au/TiO2 Catalysts , 1999 .

[60]  Gerhard Ertl,et al.  Preparation of Solid Catalysts , 1999 .

[61]  G. Rupprechter,et al.  Nanostructural evolution of high loading Rh/lanthana catalysts through the preparation and reduction steps , 1999 .

[62]  J. Pintado,et al.  Some recent results on metal/support interaction effects in NM/CeO2 (NM: noble metal) catalysts , 1999 .

[63]  G. Graham,et al.  High-Temperature-Aging-Induced Encapsulation of Metal Particles by Support Materials: Comparative Results for Pt, Pd, and Rh on Cerium–Zirconium Mixed Oxides , 1999 .

[64]  Robert Walter McCabe,et al.  Microstructure of a Pd/ceria–zirconia catalyst after high-temperature aging , 1998 .

[65]  D. Witt,et al.  The Effect of Alkali Metal Doping on the Performance of Cr/Silica Catalysts in Ethylene Polymerization , 1998 .

[66]  Bradley F. Chmelka,et al.  Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures , 1998 .

[67]  Marc D. Porter,et al.  Alkanethiolate Gold Cluster Molecules with Core Diameters from 1.5 to 5.2 nm: Core and Monolayer Properties as a Function of Core Size , 1998 .

[68]  G. Graham,et al.  Encapsulation of Pd particles by ceria-zirconia mixed oxides , 1997 .

[69]  Paul Mulvaney,et al.  Synthesis of Nanosized Gold−Silica Core−Shell Particles , 1996 .

[70]  V. Idakiev,et al.  Low-temperature water-gas shift reaction on Auα-Fe2O3 catalyst , 1996 .

[71]  Bernard Delmon,et al.  Low-Temperature Oxidation of CO over Gold Supported on TiO2, α-Fe2O3, and Co3O4 , 1993 .

[72]  M. Vannice,et al.  Low temperature CO oxidation over Au/TiO2 and Au/SiO2 catalysts , 1993 .

[73]  Masatake Haruta,et al.  Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide , 1989 .

[74]  Hiroshi Sano,et al.  Novel Gold Catalysts for the Oxidation of Carbon Monoxide at a Temperature far Below 0 °C , 1987 .

[75]  S. J. Tauster Strong metal-support interactions , 1986 .

[76]  Alexis T. Bell,et al.  Electron microscopy study of the interactions of rhodium with titania , 1985 .

[77]  B. E. Nieuwenhuys,et al.  Correlation of nucleation- and growth modes with wetting, alloy segregation, catalyst preparation and strong-metal support interaction , 1985 .

[78]  R. Baker,et al.  The interaction of palladium with alumina and titanium oxide supports , 1984 .

[79]  D. Bassett,et al.  The effect of alkali halides and silver nitrate on the crystallization of silica powders , 1972 .

[80]  Aiqin Wang,et al.  Au-Ag alloy nanoparticle as catalyst for CO oxidation: Effect of Si/Al ratio of mesoporous support , 2006 .

[81]  V. Pol,et al.  Gold-Induced Crystallization of SiO 2 and TiO 2 Powders , 2006 .

[82]  D. W. Goodman,et al.  “Catalytically active Au on Titania:” yet another example of a strong metal support interaction (SMSI)? , 2005 .

[83]  K. Chao,et al.  Highly Dispersed Metal Nanoparticles in Functionalized SBA-15 , 2003 .

[84]  C. Mou,et al.  Direct Synthesis of MCM-41 Mesoporous Aluminosilicates Containing Au Nanoparticles in Aqueous Solution , 2001 .

[85]  K. Philippot,et al.  In situ formation of gold nanoparticles within functionalised ordered mesoporous silica via an organometallic ‘chimie douce’ approach , 2001 .

[86]  Martin Muhler,et al.  CO Oxidation over Supported Gold Catalysts—“Inert” and “Active” Support Materials and Their Role for the Oxygen Supply during Reaction , 2001 .

[87]  Paul Mulvaney,et al.  Silica encapsulation of quantum dots and metal clusters , 2000 .

[88]  Charles N. Satterfield,et al.  Heterogeneous catalysis in industrial practice , 1991 .