Emulator-assisted data assimilation in complex models

Emulators are surrogates of complex models that run orders of magnitude faster than the original model. The utility of emulators for the data assimilation into ocean models is still not well understood. High complexity of ocean models translates into high uncertainty of the corresponding emulators which may undermine the quality of the assimilation schemes based on such emulators. Numerical experiments with a chaotic Lorenz-95 model are conducted to illustrate this point and suggest a strategy to alleviate this problem through the localization of the emulation and data assimilation procedures. Insights gained through these experiments are used to design and implement data assimilation scenario for a 3D fine-resolution sediment transport model of the Great Barrier Reef (GBR), Australia.

[1]  Christopher K. Wikle,et al.  Emulator-assisted reduced-rank ecological data assimilation for nonlinear multivariate dynamical spatio-temporal processes , 2014 .

[2]  Thomas Schroeder,et al.  Reef Rescue Marine Monitoring Program: Using remote sensing for GBR-wide water quality. Final report for 2012/13 activities , 2013 .

[3]  Cajo J. F. ter Braak,et al.  A Markov Chain Monte Carlo version of the genetic algorithm Differential Evolution: easy Bayesian computing for real parameter spaces , 2006, Stat. Comput..

[4]  António M. Baptista,et al.  Author's Personal Copy Dynamics of Atmospheres and Oceans Fast Data Assimilation Using a Nonlinear Kalman Filter and a Model Surrogate: an Application to the Columbia River Estuary , 2022 .

[5]  P. Kitanidis Parameter Uncertainty in Estimation of Spatial Functions: Bayesian Analysis , 1986 .

[6]  Thomas J. Santner,et al.  Design and analysis of computer experiments , 1998 .

[7]  P. Guttorp,et al.  Statistical Assessment of Numerical Models * , 2003 .

[8]  Andreas Schiller,et al.  Monitoring, Predicting, and Managing One of the Seven Natural Wonders of the World , 2014 .

[9]  Peter Jan,et al.  Particle Filtering in Geophysical Systems , 2009 .

[10]  Bryan A. Tolson,et al.  Review of surrogate modeling in water resources , 2012 .

[11]  John Parslow,et al.  Mechanisms driving estuarine water quality: A 3D biogeochemical model for informed management , 2013 .

[12]  Katja Fennel,et al.  Estimating time-dependent parameters for a biological ocean model using an emulator approach , 2012 .

[13]  Christopher K. Wikle,et al.  Modern Statistical Methods in Oceanography: A Hierarchical Perspective , 2013, 1312.5904.

[14]  Thomas J. Santner,et al.  The Design and Analysis of Computer Experiments , 2003, Springer Series in Statistics.

[15]  A. O'Hagan,et al.  Bayesian inference for the uncertainty distribution of computer model outputs , 2002 .

[16]  Zhengdong Lu,et al.  Fast neural network surrogates for very high dimensional physics-based models in computational oceanography , 2007, Neural Networks.

[17]  Jun S. Liu,et al.  Blind Deconvolution via Sequential Imputations , 1995 .

[18]  Changsheng Chen,et al.  An Unstructured Grid, Finite-Volume Coastal Ocean Model (FVCOM) System , 2006 .

[19]  R. Ariathurai,et al.  Finite Element Model for Cohesive Sediment Transport , 1976 .

[20]  Roland Doerffer,et al.  Atmospheric correction algorithm for MERIS above case‐2 waters , 2007 .

[21]  Britta Schaffelke,et al.  Water quality in the inshore Great Barrier Reef lagoon: Implications for long-term monitoring and management. , 2012, Marine pollution bulletin.

[22]  Andrea Castelletti,et al.  Data-driven dynamic emulation modelling for the optimal management of environmental systems , 2012, Environ. Model. Softw..

[23]  DREAM (D) : an adaptive markov chain monte carlo simulation algorithm to solve discrete, noncontinuous, posterior parameter estimation problems , 2011 .

[24]  Barbara J. Robson,et al.  Remote-sensing reflectance and true colour produced by a coupled hydrodynamic, optical, sediment, biogeochemical model of the Great Barrier Reef, Australia: Comparison with satellite data , 2016, Environ. Model. Softw..

[25]  O. Madsen SPECTRAL WAVE-CURRENT BOTTOM BOUNDARY LAYER FLOWS , 1995 .

[26]  Vittorio E Brando,et al.  Adaptive semianalytical inversion of ocean color radiometry in optically complex waters. , 2012, Applied optics.

[27]  P. Leeuwen Efficient nonlinear data-assimilation in geophysical fluid dynamics , 2011 .

[28]  Andy J. Keane,et al.  Recent advances in surrogate-based optimization , 2009 .

[29]  C. S. Lichtenwalner,et al.  A regional ocean modeling system for the Long‐term Ecosystem Observatory , 2005 .

[30]  Jun S. Liu,et al.  Sequential Monte Carlo methods for dynamic systems , 1997 .

[31]  Eddy Campbell,et al.  Sequential data assimilation in fine-resolution models using error-subspace emulators: Theory and preliminary evaluation , 2012 .

[32]  A. O'Hagan,et al.  Bayesian calibration of computer models , 2001 .

[33]  M. Herzfeld,et al.  Modelling the physical oceanography of the D'Entrecasteaux Channel and the Huon Estuary, south-eastern Tasmania , 2010 .

[34]  E. Lorenz Predictability of Weather and Climate: Predictability – a problem partly solved , 2006 .

[35]  B. Tilbrook,et al.  The exposure of the Great Barrier Reef to ocean acidification , 2016, Nature Communications.

[36]  O. Madsen,et al.  Movable bed roughness in unsteady oscillatory flow , 1982 .