Nickel hydroxide nanoparticle activated semi-metallic TiO(2) nanotube arrays for non-enzymatic glucose sensing.

Semi-metallic TiO2 nanotube arrays (TiOx Cy NTs) have been decorated uniformly with Ni(OH)2 nanoparticles without the aid of a polymer binder. The resulting hybrid nanotube arrays exhibit excellent catalytic activity towards non-enzymatic glucose electro-oxidation. The anodic current density of the glucose oxidation is significantly improved compared with traditional TiO2 nanotubes decorated with Ni(OH)2 . Moreover, the Ni(OH)2 /TiOx Cy NT-based electrode shows a fast response, high sensitivity, wide linear range, good selectivity and stability towards glucose electro-oxidation, and thus provides a promising and cost-effective sensing platform for non-enzymatic glucose detection.

[1]  D. Macarthur The Hydrated Nickel Hydroxide Electrode Potential Sweep Experiments , 1970 .

[2]  Patrik Schmuki,et al.  TiO2‐Nanoröhren: Synthese und Anwendungen , 2011 .

[3]  N. Kosova,et al.  Mixed layered Ni–Mn–Co hydroxides: Crystal structure, electronic state of ions, and thermal decomposition , 2007 .

[4]  Patrik Schmuki,et al.  Nanosize and vitality: TiO2 nanotube diameter directs cell fate. , 2007, Nano letters.

[5]  Guo-Li Shen,et al.  A nano-Ni based ultrasensitive nonenzymatic electrochemical sensor for glucose: enhancing sensitivity through a nanowire array strategy. , 2009, Biosensors & bioelectronics.

[6]  Marc Aucouturier,et al.  Anodic oxidation of titanium and TA6V alloy in chromic media. An electrochemical approach , 1999 .

[7]  Chen Yang,et al.  Study of the nonenzymatic glucose sensor based on highly dispersed Pt nanoparticles supported on carbon nanotubes. , 2007, Talanta.

[8]  A. Salimi,et al.  Non-enzymatic glucose detection free of ascorbic acid interference using nickel powder and nafion sol–gel dispersed renewable carbon ceramic electrode , 2005 .

[9]  Patrik Schmuki,et al.  High-aspect-ratio TiO2 nanotubes by anodization of titanium. , 2005, Angewandte Chemie.

[10]  Chen Yang,et al.  Hydrogen bubble dynamic template synthesis of porous gold for nonenzymatic electrochemical detection of glucose , 2007 .

[11]  J. Xu,et al.  Direct electrochemistry of horseradish peroxidase on TiO(2) nanotube arrays via seeded-growth synthesis. , 2008, Biosensors & bioelectronics.

[12]  Yanyan Song,et al.  Biotemplated synthesis of Au nanoparticles-TiO2 nanotube junctions for enhanced direct electrochemistry of heme proteins. , 2013, Chemical communications.

[13]  Mojtaba Shamsipur,et al.  Highly improved electrooxidation of glucose at a nickel(II) oxide/multi-walled carbon nanotube modified glassy carbon electrode. , 2010, Bioelectrochemistry.

[14]  Jan M. Macak,et al.  TiO2‐Nanoröhren mit hohem Aspektverhältnis durch Anodisieren von Ti , 2005 .

[15]  W. Visscher,et al.  Investigation of thin-film α- and β-Ni(OH)2 electrodes in alkaline solutions , 1983 .

[16]  J. Park,et al.  Engineering biocompatible implant surfaces , 2013 .

[17]  L. C. Clark,et al.  ELECTRODE SYSTEMS FOR CONTINUOUS MONITORING IN CARDIOVASCULAR SURGERY , 1962 .

[18]  Patrik Schmuki,et al.  Self-organized TiO2 nanotube layers as highly efficient photocatalysts. , 2007, Small.

[19]  Min Han,et al.  Facile synthesis of porous tubular palladium nanostructures and their application in a nonenzymatic glucose sensor. , 2010, Chemical communications.

[20]  P. Schmuki,et al.  Semimetallic TiO2 nanotubes. , 2009, Angewandte Chemie.

[21]  P. Schmuki,et al.  Highly uniform Pt nanoparticle decoration on TiO2 nanotube arrays: A refreshable platform for methanol electrooxidation , 2011 .

[22]  X. Xia,et al.  Multistage Coloring Electrochromic Device Based on TiO2 Nanotube Arrays Modified with WO3 Nanoparticles , 2011 .

[23]  P. Schmuki,et al.  A Photo-Electrochemical Investigation of Self-Organized TiO2 Nanotubes , 2010 .

[24]  S. Bauer,et al.  Amphiphilic TiO2 nanotube arrays: an actively controllable drug delivery system. , 2009, Journal of the American Chemical Society.

[25]  P. Schmuki,et al.  A self-cleaning nonenzymatic glucose detection system based on titania nanotube arrays modified with platinum nanoparticles , 2011 .

[26]  Kui Jiao,et al.  Flow-injection analysis of glucose without enzyme based on electrocatalytic oxidation of glucose at a nickel electrode. , 2007, Talanta.

[27]  A. Proctor,et al.  Curve Fitting Analysis of ESCA Ni 2p Spectra of Nickel-Oxygen Compounds and Ni/Al2O3 Catalysts , 1984 .

[28]  Patrik Schmuki,et al.  TiO2 nanotubes: synthesis and applications. , 2011, Angewandte Chemie.

[29]  Katsuyoshi Hayashi,et al.  An amperometric detector formed of highly dispersed Ni nanoparticles embedded in a graphite-like carbon film electrode for sugar determination. , 2003, Analytical chemistry.

[30]  Joseph Wang Electrochemical glucose biosensors. , 2008, Chemical reviews.

[31]  Ning Liu,et al.  A review of photocatalysis using self-organized TiO2 nanotubes and other ordered oxide nanostructures. , 2012, Small.

[32]  D. Pletcher,et al.  The kinetics and mechanism of the oxidation of amines and alcohols at oxide-covered nickel, silver, copper, and cobalt electrodes , 1972 .

[33]  G. Hicks,et al.  The Enzyme Electrode , 1967, Nature.

[34]  Yi-Ge Zhou,et al.  Gold nanoparticles integrated in a nanotube array for electrochemical detection of glucose , 2009 .

[35]  Jianbin Zheng,et al.  Nonenzymatic glucose sensor based on glassy carbon electrode modified with a nanocomposite composed of nickel hydroxide and graphene , 2012, Microchimica Acta.

[36]  Andrei Ghicov,et al.  Self-ordering electrochemistry: a review on growth and functionality of TiO2 nanotubes and other self-aligned MO(x) structures. , 2009, Chemical communications.

[37]  Wei Gao,et al.  Nonenzymatic glucose detection by using a three-dimensionally ordered, macroporous platinum template. , 2005, Chemistry.

[38]  Sejin Park,et al.  Nonenzymatic glucose detection using mesoporous platinum. , 2003, Analytical chemistry.

[39]  Huaiguo Xue,et al.  A glucose biosensor based on microporous polyacrylonitrile synthesized by single rare-earth catalyst. , 2002, Biosensors & bioelectronics.

[40]  J. Macák,et al.  Self-organized nanotubular TiO2 matrix as support for dispersed Pt/Ru nanoparticles: Enhancement of the electrocatalytic oxidation of methanol , 2005 .

[41]  Hai-Long Wu,et al.  Nano nickel oxide modified non-enzymatic glucose sensors with enhanced sensitivity through an electrochemical process strategy at high potential. , 2011, Biosensors & bioelectronics.

[42]  U. Wollenberger,et al.  Semimetallic TiO2 nanotubes: new interfaces for bioelectrochemical enzymatic catalysis , 2012 .

[43]  Teng Zhai,et al.  Free-standing nickel oxide nanoflake arrays: synthesis and application for highly sensitive non-enzymatic glucose sensors. , 2012, Nanoscale.

[44]  Kang Wang,et al.  Highly Ordered Platinum‐Nanotubule Arrays for Amperometric Glucose Sensing , 2005 .