Newer Mathematical Methods in Structural Optimization

Structural optimization means finding the best solution while considering several design constraints. The optimization can be topology, shape and size optimization. Our activity is related mainly to sizing optimization. These constraints can be the behaviour of the structure, like the stresses, fatigue, deformations, stability, eigenfrequency, damping, etc. These constraints are usually highly nonlinear, so to find the optimum it is not an easy task. It is as important to have a reliable optimization technique. There are many optimization algorithms available. Non of the algorithm is superior. All of them can have benefits and disadvantages.