Multistatic Adaptive Microwave Imaging for Early Breast Cancer Detection

We propose a new multistatic adaptive microwave imaging (MAMI) method for early breast cancer detection. MAMI is a two-stage robust Capon beamforming (RCB) based image formation algorithm. MAMI exhibits higher resolution, lower sidelobes, and better noise and interference rejection capabilities than the existing approaches. The effectiveness of using MAMI for breast cancer detection is demonstrated via a simulated 3-D breast model and several numerical examples

[1]  E. Paci Mammography and beyond: developing technologies for the early detection of breast cancer , 2002, Breast Cancer Research.

[2]  O. D. Anderson Time Series Analysis and Forecasting Society , 2006 .

[3]  S.C. Hagness,et al.  A confocal microwave imaging algorithm for breast cancer detection , 2001, IEEE Microwave and Wireless Components Letters.

[4]  Jin-Fa Lee,et al.  A perfectly matched anisotropic absorber for use as an absorbing boundary condition , 1995 .

[5]  R. Benjamin,et al.  Experimental investigation of real aperture synthetically organised radar for breast cancer detection , 2005, 2005 IEEE Antennas and Propagation Society International Symposium.

[6]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[7]  Paul M. Meaney,et al.  Enhancing breast tumor detection with near-field imaging , 2002 .

[8]  Dennis M. Sullivan,et al.  Electromagnetic Simulation Using the FDTD Method , 2000 .

[9]  S. Stuchly,et al.  Dielectric properties of mouse MCA1 fibrosarcoma at different stages of development. , 1991, Bioelectromagnetics.

[10]  A. Rubio Bretones,et al.  A ROTATING ARRAY OF ANTENNAS FOR CONFOCAL MICROWAVE BREAST IMAGING , 2003 .

[11]  R. W. Lau,et al.  The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. , 1996, Physics in medicine and biology.

[12]  Elise C. Fear,et al.  Microwave detection of breast cancer , 2000 .

[13]  Dennis M. Sullivan,et al.  Z-transform theory and the FDTD method , 1996 .

[14]  Xu Li,et al.  Microwave imaging via space-time beamforming for early detection of breast cancer , 2002, 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[15]  Jian Li,et al.  On robust Capon beamforming and diagonal loading , 2003, IEEE Trans. Signal Process..

[16]  X. Li,et al.  Confocal microwave imaging for breast cancer detection: localization of tumors in three dimensions , 2002, IEEE Transactions on Biomedical Engineering.

[17]  S. S. Chaudhary,et al.  Dielectric properties of normal & malignant human breast tissues at radiowave & microwave frequencies. , 1984, Indian journal of biochemistry & biophysics.

[18]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[19]  K. L. Carr,et al.  Microwave radiometry: its importance to the detection of cancer , 1989 .

[20]  Jian Li,et al.  Robust Capon beamforming , 2002, Conference Record of the Thirty-Sixth Asilomar Conference on Signals, Systems and Computers, 2002..

[21]  Ahmed Mamouni,et al.  Microwave radiometric imaging at 3 GHz for the exploration of breast tumors , 1990 .

[22]  Jian Li,et al.  Microwave Imaging Via Adaptive Beamforming Methods for Breast Cancer Detection , 2006 .

[23]  김덕영 [신간안내] Computational Electrodynamics (the finite difference time - domain method) , 2001 .

[24]  M. Okoniewski,et al.  Confocal microwave imaging for breast tumor detection: application to a hemispherical breast model , 2002, 2002 IEEE MTT-S International Microwave Symposium Digest (Cat. No.02CH37278).

[25]  Dennis M. Sullivan,et al.  Frequency-dependent FDTD methods using Z transforms , 1992 .

[26]  W. Joines,et al.  The measured electrical properties of normal and malignant human tissues from 50 to 900 MHz. , 1994, Medical physics.

[27]  Ian J Craddock,et al.  Numerical investigation of breast tumour detection using multi-static radar , 2003 .

[28]  Jian Li,et al.  A new derivation of the APES filter , 1999, IEEE Signal Processing Letters.

[29]  Lihong V. Wang,et al.  Microwave-induced acoustic imaging of biological tissues , 1999 .

[30]  Stuchly,et al.  Dielectric properties of breast carcinoma and the surrounding tissues , 1988, IEEE Transactions on Biomedical Engineering.

[31]  Jian Li,et al.  An adaptive filtering approach to spectral estimation and SAR imaging , 1996, IEEE Trans. Signal Process..

[32]  P. Kosmas,et al.  Modeling with the FDTD method for microwave breast cancer detection , 2004, IEEE Transactions on Microwave Theory and Techniques.

[33]  S. Gedney An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices , 1996 .

[34]  Robert H. Svenson,et al.  Two-dimensional computer analysis of a microwave flat antenna array for breast cancer tomography , 2000 .

[35]  S. K. Davis,et al.  MICROWAVE IMAGING VIA SPACE-TIME BEAMFORMING FOR EARLY DETECTION OF BREAST CANCER: BEAMFORMER DESIGN IN THE FREQUENCY DOMAIN , 2003 .

[36]  Paul M. Meaney,et al.  A clinical prototype for active microwave imaging of the breast , 2000 .